Вопрос задан 25.01.2021 в 05:44. Предмет Алгебра. Спрашивает Текель Екатерина.

При каких значениях параметра aодин из корней уравнения ax²+(a+3)x−3a=0больше 1, а другой

меньше −1.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ковальская Даша.
Из условия следует, что отрезок [−1;1] лежит между корнями, поэтому корней должно быть два (значит, a≠0). Если ветви параболы  y=ax2+(a+3)x−3aнаправлены вверх, то y(−1)<0и y(1)<0; если же они направлены вниз, то y(−1)>0и y(1)>0.
Пусть a>0. Тогда
{ y(−1)=a−(a+3)−3a=−3a−3<0
{ y(1)=a+(a+3)−3a=−a+3<0 a>0
{ a>−1 a>3 a>0⇔a>3.
Ответ: a∈(−∞;−1)∪(3;+∞)
0 0
Отвечает Шукало Верка.
Имеем случай х1<p<q<x2
1)если a>0⇒
{f(p)<0
{f(q)<0
2)если a>0⇒
F(p)>0
{f(q)>0
1)a>0
{f(-1)<0⇒a-a-3-3a<0⇒-3a<3⇒a>-1
f(1)<0⇒a+a+3-3a<0⇒-a<-3⇒a>3
a∈(3;∞)
2)a<0
{f(-1)>0⇒a<-1
{f(1)>0⇒a<3
a∈(-∞;-1)
Ответ a∈(-∞;-1) U (3;∞)
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос