
Вопрос задан 15.11.2020 в 18:38.
Предмет Алгебра.
Спрашивает Темирхан Мухамедияр.
Три числа составляют геометрическую прогрессию. Если от третьего отнять 4, то числа составят
арифметическую прогрессию. Если же от второго и третьего членов полученной арифметической прогрессии отнять по 1, то снова получится геометрическая прогрессия. Найти эти числа.

Ответы на вопрос

Отвечает Амиржанов Азат.
По условию
Геометрическая прогрессия : b₁ , b₂ , b₃ (1)
Арифметическая прогрессия : b₁ , b₂ , b₃-4 (2)
Геометрическая прогрессия : b₁ , b₂-1 , b₃-5 (3)
Для членов геометрической прогрессии справедливо среднее геометрическое :
Для членов арифметической прогрессии справедливо среднее арифметическое :
⇔ 
Тогда по условию можно составить систему из трёх уравнений с тремя неизвестными
1) b₂² = b₁*b₃
2) 2b₂ = b₁ + b₃ - 4 ⇔ b₃ = 2b₂ - b₁ + 4
3) (b₂-1)² = b₁*(b₃ - 5)
Третье уравнение упростить
b₂² -2b₂ + 1 = b₁*b₃ - 5b₁ Подставить из первого уравнения b₁*b₃
b₂² -2b₂ + 1 = b₂² - 5b₁
-2b₂ + 1 = - 5b₁ ⇔ 5b₁ = 2b₂ - 1 ⇔ b₁ = 0,4b₂ - 0,2
Подставить полученное b₁ во второе уравнение
b₃ = 2b₂ - b₁ + 4 = 2b₂ - (0,4b₂ - 0,2) + 4 = 2b₂ - 0,4b₂ + 0,2 + 4
b₃ = 1,6b₂ + 4,2
Подставить b₁ и b₃ в первое уравнение
b₂² = b₁*b₃
b₂² = (0,4b₂ - 0,2)*(1,6b₂ + 4,2)
b₂² = 0,64b₂² - 0,32b₂ + 1,68b₂ - 0,84
0,36b₂² -1,36b₂ + 0,84 = 0 | * 25
9b₂² - 34 b₂ + 21 = 0
D/4 = (34/2)² - 9*21 = 289 - 189 = 100 = 10²
a) b₂' = (34/2 - 10)/9 = 7/9 ⇒
b₁' = 0,4b₂ - 0,2 = 0,4*(7/9) - 0,2 = 1/9;
b₃' = 1,6b₂ + 4,2 = 1,6*(7/9) + 4,2 = 49/9
b) b₂" = (34/2 + 10)/9 = 3
b₁" = 0,4b₂ - 0,2 = 0,4*3 - 0,2 = 1
b₃" = 1,6b₂ + 4,2 = 1,6 * 3 + 4,2 = 9
--------------------------------------------------------
Проверка - вариант а)
Геометрическая прогрессия
со знаменателем q = 7
Арифметическая прогрессия
с разностью 
Геометрическая прогрессия
со знаменателем q = -2
Проверка - вариант b)
Геометрическая прогрессия 1; 3; 9 со знаменателем q = 3
Арифметическая прогрессия 1; 3; 5 с разностью d = 2
Геометрическая прогрессия 1; 2; 4 со знаменателем q = 2
Ответ: числа
или 1; 3; 9
Геометрическая прогрессия : b₁ , b₂ , b₃ (1)
Арифметическая прогрессия : b₁ , b₂ , b₃-4 (2)
Геометрическая прогрессия : b₁ , b₂-1 , b₃-5 (3)
Для членов геометрической прогрессии справедливо среднее геометрическое :
Для членов арифметической прогрессии справедливо среднее арифметическое :
Тогда по условию можно составить систему из трёх уравнений с тремя неизвестными
1) b₂² = b₁*b₃
2) 2b₂ = b₁ + b₃ - 4 ⇔ b₃ = 2b₂ - b₁ + 4
3) (b₂-1)² = b₁*(b₃ - 5)
Третье уравнение упростить
b₂² -2b₂ + 1 = b₁*b₃ - 5b₁ Подставить из первого уравнения b₁*b₃
b₂² -2b₂ + 1 = b₂² - 5b₁
-2b₂ + 1 = - 5b₁ ⇔ 5b₁ = 2b₂ - 1 ⇔ b₁ = 0,4b₂ - 0,2
Подставить полученное b₁ во второе уравнение
b₃ = 2b₂ - b₁ + 4 = 2b₂ - (0,4b₂ - 0,2) + 4 = 2b₂ - 0,4b₂ + 0,2 + 4
b₃ = 1,6b₂ + 4,2
Подставить b₁ и b₃ в первое уравнение
b₂² = b₁*b₃
b₂² = (0,4b₂ - 0,2)*(1,6b₂ + 4,2)
b₂² = 0,64b₂² - 0,32b₂ + 1,68b₂ - 0,84
0,36b₂² -1,36b₂ + 0,84 = 0 | * 25
9b₂² - 34 b₂ + 21 = 0
D/4 = (34/2)² - 9*21 = 289 - 189 = 100 = 10²
a) b₂' = (34/2 - 10)/9 = 7/9 ⇒
b₁' = 0,4b₂ - 0,2 = 0,4*(7/9) - 0,2 = 1/9;
b₃' = 1,6b₂ + 4,2 = 1,6*(7/9) + 4,2 = 49/9
b) b₂" = (34/2 + 10)/9 = 3
b₁" = 0,4b₂ - 0,2 = 0,4*3 - 0,2 = 1
b₃" = 1,6b₂ + 4,2 = 1,6 * 3 + 4,2 = 9
--------------------------------------------------------
Проверка - вариант а)
Геометрическая прогрессия
Арифметическая прогрессия
Геометрическая прогрессия
Проверка - вариант b)
Геометрическая прогрессия 1; 3; 9 со знаменателем q = 3
Арифметическая прогрессия 1; 3; 5 с разностью d = 2
Геометрическая прогрессия 1; 2; 4 со знаменателем q = 2
Ответ: числа


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili