Вопрос задан 04.09.2020 в 08:33. Предмет Физика. Спрашивает Кобляков Женя.

Прошу, пожалуйста, умоляю, ПОМОГИТЕ! Совсем не понимаю! Если Петя бежит навстречу Васе, то

расстояние между ними уменьшается на 20 м за каждые 4 с, а если Петя убегает от Васи , то расстояние между ними увеличивается на 6 м за каждые 2 с. Во сколько раз скорость Пети больше скорости Васи?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Understanding the Problem

The problem states that if Petya is running towards Vasya, the distance between them decreases by 20 meters every 4 seconds. On the other hand, if Petya is running away from Vasya, the distance between them increases by 6 meters every 2 seconds. The question asks in what ratio Petya's speed is greater than Vasya's speed.

Solution

To solve this problem, we need to compare the rates at which the distance between Petya and Vasya changes in both scenarios. Let's assume that Petya's speed is represented by P and Vasya's speed is represented by V.

When Petya is running towards Vasya, the distance between them decreases by 20 meters every 4 seconds. This can be represented by the equation:

P * 4 = 20

Similarly, when Petya is running away from Vasya, the distance between them increases by 6 meters every 2 seconds. This can be represented by the equation:

P * 2 = -6

Simplifying these equations, we can find the values of P and V:

P = 5 (from the first equation) P = -3 (from the second equation)

Since we are interested in the ratio of Petya's speed to Vasya's speed, we can calculate:

P / V = 5 / V (from the first equation) P / V = -3 / V (from the second equation)

Therefore, the ratio of Petya's speed to Vasya's speed is 5 / V when Petya is running towards Vasya, and -3 / V when Petya is running away from Vasya.

Conclusion

The ratio of Petya's speed to Vasya's speed depends on the value of V. Without knowing the value of V, we cannot determine the exact ratio. However, we can conclude that Petya's speed is greater than Vasya's speed, as the value of P is positive in both scenarios.

Please note that the search results provided by You.com did not provide any relevant information for this specific problem. Therefore, the solution was derived using mathematical reasoning.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос