
Если на вагонетку массой m, движущуюся без трения по горизонтальным рельсам со скоростью v,
опустить вертикально сверху груз,масса которого равна половине массы вагонетки, то скорость вагонетки с грузом станет равной?

Ответы на вопрос

по закону сохранения импульса
m*V = U*(m+0,5*m
V=1,5*U=3*U/2
U=2*V/3 - ответ



Для решения этой задачи можно использовать законы сохранения энергии. Посмотрим на начальную и конечную точки системы, чтобы определить, как изменится кинетическая энергия вагонетки с грузом.
Изначально (без груза): 1. Кинетическая энергия вагонетки: \( E_{\text{кин, нач}} = \frac{1}{2} m v^2 \)
После опускания груза (с грузом): 1. Кинетическая энергия вагонетки: \( E_{\text{кин, кон}} = \frac{1}{2} (m + \frac{m}{2}) (v_{\text{кон}})^2 \)
Закон сохранения энергии гласит, что начальная кинетическая энергия должна быть равна конечной, если не действуют никакие внешние силы, совершающие работу или теряющие энергию.
\[ E_{\text{кин, нач}} = E_{\text{кин, кон}} \]
\[ \frac{1}{2} m v^2 = \frac{1}{2} \left(m + \frac{m}{2}\right) (v_{\text{кон}})^2 \]
Теперь решим уравнение относительно \(v_{\text{кон}}\).
\[ m v^2 = \left(m + \frac{m}{2}\right) (v_{\text{кон}})^2 \]
Упростим:
\[ 2 m v^2 = 3 m (v_{\text{кон}})^2 \]
\[ v_{\text{кон}} = \sqrt{\frac{2}{3}} v \]
Таким образом, скорость вагонетки с грузом станет равной \(\sqrt{\frac{2}{3}}\) от изначальной скорости \(v\).


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili