
Автомобиль первую половину пути ехал со скоростью в 1.5 раза больше чем вторую половину.найти
отношение средней скорости автомобиля на всем пути к скорости на второй половине пути

Ответы на вопрос

v1 = S/2t1 t1 = S/2v1
t2 время затраченное на вторую половину
v2 = S/2t2 t2 = S/2v2
v1 = 1.5v2 v2 = 2v1/3
<v> = S/ (t1+t2) = S / (S/3v2 + S/2v2) = 6v2/5 средняя скорость
<v>/v2 = 6/5 = 1.2



Problem Analysis
We are given that a car traveled the first half of the distance at a speed 1.5 times greater than the speed during the second half. We need to find the ratio of the average speed of the car for the entire journey to the speed during the second half of the journey.Solution
Let's assume the speed during the second half of the journey is v. According to the given information, the speed during the first half of the journey is 1.5v.To find the average speed for the entire journey, we can use the formula:
Average Speed = Total Distance / Total Time
Since the distance traveled during the first half is the same as the distance traveled during the second half, we can simplify the formula to:
Average Speed = 2 * Distance / Total Time
To find the total time, we need to consider the time taken for the first half and the time taken for the second half.
Let's assume the distance traveled during each half is d. Therefore, the total distance is 2d.
The time taken for the first half is d / (1.5v), and the time taken for the second half is d / v.
Substituting these values into the formula for average speed, we get:
Average Speed = 2d / (d / (1.5v) + d / v)
Simplifying further:
Average Speed = 2 / (1 / (1.5v) + 1 / v)
To find the ratio of the average speed to the speed during the second half, we divide the average speed by v:
Ratio = Average Speed / v = (2 / (1 / (1.5v) + 1 / v)) / v
Simplifying further:
Ratio = 2 / (1 / (1.5v) + 1 / v)
Now we can substitute the value of v to find the ratio.
Calculation
Let's assume the speed during the second half of the journey is v = 60 km/h.Substituting this value into the formula for the ratio, we get:
Ratio = 2 / (1 / (1.5 * 60) + 1 / 60)
Simplifying further:
Ratio = 2 / (1 / 90 + 1 / 60)
Calculating the values inside the parentheses:
Ratio = 2 / (0.0111 + 0.0167)
Ratio = 2 / 0.0278
Ratio ≈ 71.86
Therefore, the ratio of the average speed of the car for the entire journey to the speed during the second half of the journey is approximately 71.86.
Answer
The ratio of the average speed of the car for the entire journey to the speed during the second half of the journey is approximately 71.86.

Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili