
Шайба скользит с ледяной горки высотой H=5м, наклоненной к горизонту под углом α=45º. Коэффициент
трения шайбы о лед равен 0,2. Горка плавно переходит в горизонтальную ледяную поверхность. Какой путь пройдет шайба до остановки по горизонтальной поверхности?

Ответы на вопрос




Calculation of the Distance Traveled by the Puck
To calculate the distance traveled by the puck on the horizontal surface, we can use the principles of conservation of energy and the work-energy theorem.
The initial potential energy of the puck at the top of the inclined plane can be calculated using the formula:
Potential energy = mass x gravity x height Potential energy = mgh
Given that the height of the inclined plane is 5m and the mass of the puck is not provided, we cannot calculate the exact potential energy. However, we can proceed with the calculations using the general formula.
The potential energy is converted into kinetic energy as the puck slides down the inclined plane. The kinetic energy can be calculated using the formula:
Kinetic energy = 0.5 x mass x velocity^2 Kinetic energy = (1/2)mv^2
Since the puck is sliding without any external forces acting on it, the work done by friction is equal to the change in kinetic energy. The work done by friction can be calculated using the formula:
Work done by friction = force of friction x distance Work done by friction = μmgd
Where: - μ is the coefficient of friction between the puck and the ice (given as 0.2) - m is the mass of the puck - g is the acceleration due to gravity (approximately 9.8 m/s^2) - d is the distance traveled by the puck on the horizontal surface
Equating the work done by friction to the change in kinetic energy, we have:
μmgd = (1/2)mv^2
Simplifying the equation, we get:
d = (1/2)μg(v^2/m)
To find the value of v^2/m, we can use the conservation of energy principle:
Potential energy at the top = Kinetic energy at the bottom
mgh = (1/2)mv^2
Simplifying the equation, we get:
v^2/m = 2gh
Substituting this value back into the equation for d, we have:
d = (1/2)μg(2gh) d = μgh
Given that the height of the inclined plane (H) is 5m and the angle of inclination (α) is 45 degrees, we can calculate the distance traveled by the puck on the horizontal surface (d).
Please note that the mass of the puck is not provided, so we cannot calculate the exact distance. However, we can proceed with the calculations using the general formula.
Using the given values: - H = 5m - α = 45 degrees - μ = 0.2 - g = 9.8 m/s^2
We can calculate the distance traveled by the puck on the horizontal surface (d) as follows:
d = μgh d = 0.2 x 9.8 x 5 d = 9.8 meters
Therefore, the puck will travel approximately 9.8 meters on the horizontal surface before coming to a stop.
Please note that the exact distance traveled by the puck may vary depending on the mass of the puck, which is not provided in the question.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili