Вопрос задан 14.11.2018 в 19:41. Предмет Физика. Спрашивает Марчук Ульна.

Третий вагон поезда, начавшего двигаться равноускоренно без начальной скорости, прошел мимо

неподвижного наблюдателя за время t3=4с. За какое время tобщ пройдет мимо него весь поезд, состоящий из N=10 вагонов одинаковой длины? За какое время t1 пройдет мимо него первый вагон?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Mikashov Daniil.
При равноускоренном движении путь связан со временем известной зависимостью:
s=v_0*t+ \frac{a*t^2}{2} \qquad (1)
По условию начальная скорость отсутствует и формула (1) упрощается:
s= \frac{a*t^2}{2} \qquad (2)
Путь, который прошел поезд до того, как с наблюдателем поравнялось начало третьего вагона равен 2*l, где l - длина вагона. Тогда путь, который прошел поезд к моменту, когда конец третьего вагона прошел мимо наблюдателя, равен 2*l+l=3*l.
Из (2) выразим время этих событий, T2 (прошел второй вагон и начался третий) и T3 (прошел третий вагон и начался четвертый).
T_2= \sqrt{ \frac{2*2*l}{a}}=\sqrt{ \frac{4*l}{a}}=2\sqrt{ \frac{l}{a}}; \quad T_3= \sqrt{ \frac{2*3*l}{a}}=\sqrt{ \frac{6*l}{a}};
По условию третий вагон прошел мимо наблюдателя за время t3=4c, тогда получаем уравнение:
T_3-T_2=t_3; \\ \sqrt{ \frac{6*l}{a}}-2\sqrt{ \frac{l}{a}}=4; \qquad (3)
Сделаем замену переменных k²=l / a и уравнение (3) примет вид:
 k\sqrt{6}-2k=4; \ k( \sqrt{6}-2)=4 \to k= \frac{4}{ \sqrt{6}-2}; \\ k^2= \frac{16}{6-4 \sqrt{6}+4}= \frac{16}{10-4 \sqrt{6}}=\frac{8}{5-2\sqrt{6}}; \\  \frac{l}{a}=\frac{8}{5-2\sqrt{6}} \to a= \frac{1}{8}(5-2 \sqrt{6})*l \qquad (4)
Весь поезд состоит из десяти вагонов, т.е. имеет длину 10*l. Тогда подставив (4) в (2) и полагая s=10*l найдем общее время:
10*l= \frac{\frac{1}{8}(5-2 \sqrt{6})*l*t^2}{2}; \ 160=(5-2 \sqrt{6})*t^2 \to t= \sqrt{\frac{160}{5-2 \sqrt{6}}}\approx 39.8 (c)
Аналогичным образом для пути равного l найдем время, за которое первый вагон пройдет мимо наблюдателя:
l= \frac{\frac{1}{8}(5-2 \sqrt{6})*l*t^2}{2}; \ 16=(5-2 \sqrt{6})*t^2 \to t= \sqrt{\frac{16}{5-2 \sqrt{6}}}\approx 12.6 (c)
0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос