Вопрос задан 07.08.2018 в 04:09. Предмет Физика. Спрашивает Чуева Яна.

Помогите пожалуйста, РЕШАТЬ НЕ НУЖНО, нужны лишь формулы для решения этой задачи: Тело бросили

вертикально вверх со скоростью 10 км/с. Какой будет его скорость (км/с) на высоте 20000 км? Сопротивление воздуха можно не учитывать. g=0,01 км/с², радиус Земли R = 6400 км.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кирлашева Кристина.
E1=m*vo²/2
E2=m*v²/2
Eп=m*g*(R+h)
E2=E1-Eп
v=√(vo²-2*g*(R+h))
На самом деле нужно брать интеграл, так как ускорение меняется с высотой
==============================
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи можно использовать законы движения тела в вертикальном направлении. Для начала, давайте определим данные, которые нам даны:

- Начальная скорость (v₀) = 10 км/с - Высота (h) = 20000 км - Гравитационное ускорение (g) = 0,01 км/с² - Радиус Земли (R) = 6400 км

Чтобы найти конечную скорость тела на указанной высоте, мы можем использовать закон сохранения энергии. Полная механическая энергия тела в начальный момент времени (E₀) будет равна сумме его кинетической и потенциальной энергии:

E₀ = 0.5 * m * v₀² + m * g * h₀

где m - масса тела (которую мы не знаем), v₀ - начальная скорость, h₀ - начальная высота (равная радиусу Земли).

На высоте 20000 км потенциальная энергия (E) тела будет равна:

E = 0.5 * m * v² + m * g * h

где v - конечная скорость, h - высота, g - гравитационное ускорение.

Мы можем приравнять начальную и конечную энергию:

E₀ = E

0.5 * m * v₀² + m * g * h₀ = 0.5 * m * v² + m * g * h

Теперь мы можем решить это уравнение относительно v.

Выразим m из уравнения:

m = (0.5 * m * v₀² + m * g * h₀) / (0.5 * v² + g * h)

Теперь подставим это значение в уравнение и решим его относительно v:

(0.5 * m * v₀² + m * g * h₀) / (0.5 * v² + g * h) = v

Далее подставим известные значения:

(0.5 * v₀² + g * h₀) / (0.5 * v² + g * h) = v

(0.5 * (10 км/с)² + (0,01 км/с²) * 6400 км) / (0.5 * v² + (0,01 км/с²) * 20000 км) = v

(0.5 * 100 км²/с² + 64 км/с²) / (0.5 * v² + 0,2 км/с²) = v

После упрощения уравнения, мы получим:

(50 км²/с² + 64 км/с²) / (0.5 * v² + 0,2 км/с²) = v

(114 км/с²) / (0.5 * v² + 0,2 км/с²) = v

Теперь нам нужно решить это уравнение для v. Однако, такое уравнение не может быть решено аналитически. Мы можем использовать численные методы, такие как метод Ньютона, чтобы найти приближенное значение v. Также можно воспользоваться программой или калькулятором для численного решения уравнений.

Примечание: Для этого примера я использовал простую модель без учета сопротивления воздуха. В реальности сопротивление воздуха будет влиять на движение тела, поэтому результат может отличаться от полученного значения.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос