
Вопрос задан 28.07.2018 в 18:37.
Предмет Физика.
Спрашивает Михайлова Лилия.
Шарик скатывается с наклонной плоскости с углом наклона без трения. Ускорение шарика при этом
равно:

Ответы на вопрос

Отвечает Кевляк Карина.
PsinA=ma
a=PsinA/m=mgsinA/m=gsinA=10sinA или gSinA
A - альфа
a=PsinA/m=mgsinA/m=gsinA=10sinA или gSinA
A - альфа



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Ускорение шарика, скатывающегося с наклонной плоскости без трения, можно определить с помощью формулы ускорения. Формула ускорения для объекта, скатывающегося по наклонной плоскости без трения, выглядит следующим образом:
a = g * sin(θ)
где: - a - ускорение шарика, - g - ускорение свободного падения (приближенно равно 9,8 м/с² на поверхности Земли), - θ - угол наклона плоскости.
Таким образом, ускорение шарика при скатывании с наклонной плоскости без трения равно ускорению свободного падения, умноженному на синус угла наклона плоскости.
Ответ:
Ускорение шарика при скатывании с наклонной плоскости без трения равно g * sin(θ).


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili