
Для заданных множеств A и B найти АUB,А∩B,А/B,B/A если A=(-8,6], B=[1, ∞), универсальное множество
(-∞,+∞).

Ответы на вопрос

Давайте разберемся с каждым из перечисленных операторов над множествами.
Дано: \[ A = (-8, 6], \quad B = [1, +\infty), \quad \text{Универсальное множество } U = (-\infty, +\infty). \]
1. Объединение множеств \( A \cup B \): \[ A \cup B \] обозначает множество всех элементов, которые принадлежат хотя бы одному из множеств \( A \) или \( B \). Для данного примера: \[ A \cup B = (-8, 6] \cup [1, +\infty) \] Чтобы найти объединение, мы берем все элементы из \( A \) и все элементы из \( B \), причем убираем повторяющиеся элементы. В результате получаем: \[ A \cup B = (-8, +\infty) \]
2. Пересечение множеств \( A \cap B \): \[ A \cap B \] обозначает множество всех элементов, которые принадлежат как множеству \( A \), так и множеству \( B \). Для данного примера: \[ A \cap B = (-8, 6] \cap [1, +\infty) \] Чтобы найти пересечение, мы берем только те элементы, которые присутствуют в обоих множествах. В данном случае: \[ A \cap B = [1, 6] \]
3. Разность множеств \( A/B \): \[ A/B \] обозначает множество всех элементов, которые принадлежат множеству \( A \), но не принадлежат множеству \( B \). Для данного примера: \[ A/B = (-8, 6] \setminus [1, +\infty) \] Чтобы найти разность, мы берем все элементы из \( A \) и убираем те, которые принадлежат также множеству \( B \). В результате получаем: \[ A/B = (-8, 1) \]
4. Разность множеств \( B/A \): \[ B/A \] обозначает множество всех элементов, которые принадлежат множеству \( B \), но не принадлежат множеству \( A \). Для данного примера: \[ B/A = [1, +\infty) \setminus (-8, 6] \] Чтобы найти разность, мы берем все элементы из \( B \) и убираем те, которые принадлежат также множеству \( A \). В результате получаем: \[ B/A = [6, +\infty) \]
Таким образом, мы нашли объединение, пересечение, разность \( A/B \) и разность \( B/A \) для заданных множеств \( A \) и \( B \).


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili