
1. Найдите а) первый член; б) пятый член геометрической прогрессии, у которой знаменатель равен 5,
а а седьмой член 62 500. можно с полным решением

Ответы на вопрос

Finding the First and Fifth Terms of a Geometric Progression
To find the first and fifth terms of a geometric progression, we need to know the common ratio and one of the terms. In this case, we are given that the common ratio is 5 and the seventh term is 62,500.
Let's denote the first term as a and the common ratio as r.
We can use the formula for the nth term of a geometric progression:
aₙ = a * r^(n-1)
Given that the seventh term is 62,500, we have:
a₇ = a * r^(7-1) = 62,500
Substituting the value of the common ratio, which is 5, we can solve for the first term:
a * 5^6 = 62,500
Simplifying the equation:
a * 15,625 = 62,500
Dividing both sides of the equation by 15,625:
a = 62,500 / 15,625 = 4
Therefore, the first term of the geometric progression is 4.
To find the fifth term, we can use the same formula:
a₅ = a * r^(5-1)
Substituting the values of the first term and the common ratio:
a₅ = 4 * 5^4
Simplifying the equation:
a₅ = 4 * 625 = 2,500
Therefore, the fifth term of the geometric progression is 2,500.
In summary: - The first term of the geometric progression is 4. - The fifth term of the geometric progression is 2,500.
Please let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili