Вопрос задан 31.08.2020 в 19:00. Предмет Математика. Спрашивает Русских Влад.

Купили 5 одинаковых альбомов по цене 60 к. и несколько одинаковых тетрадей по цене 15 к. За все

альбомы заплатили столько же денег сколько за все тетради. Сколько купили тетрадий?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим количество купленных альбомов как \( x \), а количество купленных тетрадей как \( y \).

Цена одного альбома - 60 копеек. Цена одной тетради - 15 копеек.

Мы знаем, что за все альбомы заплатили столько же денег, сколько за все тетради. Мы можем записать это уравнение:

\[ 5x \cdot 60\text{ к.} = y \cdot 15\text{ к.} \]

Раскроем скобки и упростим:

\[ 300x = 15y \]

Теперь давайте рассмотрим другую информацию: за все альбомы и за все тетради заплатили одинаковую сумму. Мы можем записать второе уравнение:

\[ 5x \cdot 60\text{ к.} = y \cdot 15\text{ к.} \]

Раскроем скобки и упростим:

\[ 300x = 60y \]

Теперь у нас есть система уравнений:

\[ \begin{align*} 300x &= 15y \\ 300x &= 60y \end{align*} \]

Мы видим, что обе части системы равны \( 300x \). Это означает, что \( 15y \) и \( 60y \) также равны между собой. Разделим обе части на 15:

\[ 15y = 60y \]

Теперь у нас получается, что \( y = 0 \). Это означает, что количество купленных тетрадей \( y \) равно нулю.

Таким образом, ответ: вы купили 0 тетрадей.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос