Вопрос задан 31.08.2020 в 15:06. Предмет Математика. Спрашивает Воробьева Кира.

В прямоугольном треугольнике катет и гипотенуза равны 18 и 30. Найдите высоту, проведённую к

гипотенузе.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи воспользуемся теоремой Пифагора, которая гласит, что в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Из условия задачи известно, что один из катетов равен 18, а гипотенуза равна 30. Обозначим второй катет как x (высоту, проведенную к гипотенузе).

Применяя теорему Пифагора, получаем:

30^2 = 18^2 + x^2

900 = 324 + x^2

Вычитаем 324 из обеих сторон:

576 = x^2

Вычисляем квадратный корень от обеих сторон:

√576 = √(x^2)

24 = x

Таким образом, высота, проведенная к гипотенузе, равна 24.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос