Вопрос задан 01.08.2020 в 04:31.
Предмет Математика.
Спрашивает Гашишев Дмитрий.
Найдите четырехзначное число , больше 1500, но меньше 2000, которое делится на 24 и сумма цифр
которого равна 21.Ответы на вопрос
        Отвечает Ляшенко Валерия.
                
    Ответ:
Пошаговое объяснение:
Если число делится на 24, то оно делится на 3 и на 8.
Число делится на 3, если его сумма цифр делится на 3.
У нас сумма цифр должна быть равной 21, то есть подходит.
Первая цифра 1, остальные три должны в сумме давать 20, и при этом эти три последние цифры должны образовать число, кратное 8.
Тогда и все число будет делиться на 8.
Самое маленькое из кратных 24 чисел 1512, а самое большое 1992.
Сумма цифр 21 будет у чисел 1776 = 24*74, 1848 = 24*77, 1992 = 24*83.
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
	- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			