
Вопрос задан 01.08.2020 в 04:31.
Предмет Математика.
Спрашивает Гашишев Дмитрий.
Найдите четырехзначное число , больше 1500, но меньше 2000, которое делится на 24 и сумма цифр
которого равна 21.

Ответы на вопрос

Отвечает Ляшенко Валерия.
Ответ:
Пошаговое объяснение:
Если число делится на 24, то оно делится на 3 и на 8.
Число делится на 3, если его сумма цифр делится на 3.
У нас сумма цифр должна быть равной 21, то есть подходит.
Первая цифра 1, остальные три должны в сумме давать 20, и при этом эти три последние цифры должны образовать число, кратное 8.
Тогда и все число будет делиться на 8.
Самое маленькое из кратных 24 чисел 1512, а самое большое 1992.
Сумма цифр 21 будет у чисел 1776 = 24*74, 1848 = 24*77, 1992 = 24*83.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili