Вопрос задан 27.05.2020 в 10:25. Предмет Математика. Спрашивает Сермягин Илья.

В треугольнике АВС проведена медиана ВМ, на стороне АВ взята точка К так, что АК=1/5АВ, площадь

треугольника АМК равна 3, найдите площадь треугольника АВС "
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Новарчук Никита.
1. Рассмотрим треугольники АВС и МКС
они подобны по двум сторонам и углу (ВС=2КС, АС=2МС, и угол С общий) . Следовательно все углы в них равны и стороны пропорциональны
2. Равенство углов АВС и МКС а также ВАС и КМС означает что отрезки АВ и КМ параллельны
3. Из п. 2 следует что угол ВАК=МКА, угол АБМ = КМБ. Углы ВОА и КОМ равны тоже равны
4. Треугольники АОВ и МКО подобны по трем углам

5. Вернемся к п, 1 так как треугольники АВС и МКС подобны, то 2МК = АВ (остальные стороны тоже относятся в два раза больше/меньше)
6. Остальные стороны треугольников АОВ и МОК тоже относятся как 1 к 2 (треугольники то подобны)
7. Если стороны в два раза меньше то площадь в 4 раза меньше (тут можно приписать любую формулу для площади треугольника и убедится что это так).
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос