
Вопрос задан 17.05.2020 в 17:47.
Предмет Математика.
Спрашивает Лемешевская Катя.
При каких значениях параметра а система имеет 4 различных решения?



Ответы на вопрос

Отвечает Калимулин Никита.
При каких значениях параметра а система имеет 4 различных решения?
Решение:
Так как в первом уравнение системы произведение то система уравнений распадается на две подсистемы.

Каждая система уравнений представляет собой прямую x+ay-3=0(x+ay-3a=0) и окружность x²+y²=8 с центров в начале координат и радиусом R=2√2.
Легко показать что при а=0 данные система имеет только два решения так как первое уравнение в первой системе x=3 и первая система решений не имеет, а во второй системе первое уравнение х = 0 и система имеет два решения.
Поэтому для четырех решений необходимо чтобы каждая подсистема уравнений имела 2 решения и a≠0.

В первой системе уравнений подставим первое уравнение во второе
(3 - ay)² + y² = 8
9 - 6ay+a²y² +y² = 8
y²(a² + 1) - 6ay + 1 = 0
Данное уравнение имеет два решения если дискриминант больше нуля D > 0
D = 36a² - 4(a² + 1) = 36a² - 4a² - 4 = 32a² - 4 = 4(8a²-1)
8a² - 1 > 0
a² > 1/8
если a ∈ (-oo;-1/(2√2))U(1/(2√2);+oo)
Во второй системе подставим первое уравнение во второе
(3a - ay)²+ y² = 8
9a² - 6a²y + a²y² + y² = 8
y²(a² + 1) - 6a²x + 9a² - 8 =0
Данное уравнение имеет два решения если дискриминант больше нуля
D>0
D = 36a⁴ - 4(a²+1)(9a²-8) = 36a⁴ - 4(9a⁴+a²-8)=36a⁴ - 36a⁴ -4a² +32=
= 32 - 4a² =4(8 - a²)
8 - a² > 0
a² < 8 если a∈(-2√2;2√2)
Пересечение интервалов решений двух систем уравнений является интервал a∈(-2√2;-1/(2√2))U(1/(2√2);2√2)
Ответ :a∈(-2√2;-1/(2√2))U(1/(2√2);2√2)
Решение:
Так как в первом уравнение системы произведение то система уравнений распадается на две подсистемы.
Каждая система уравнений представляет собой прямую x+ay-3=0(x+ay-3a=0) и окружность x²+y²=8 с центров в начале координат и радиусом R=2√2.
Легко показать что при а=0 данные система имеет только два решения так как первое уравнение в первой системе x=3 и первая система решений не имеет, а во второй системе первое уравнение х = 0 и система имеет два решения.
Поэтому для четырех решений необходимо чтобы каждая подсистема уравнений имела 2 решения и a≠0.
В первой системе уравнений подставим первое уравнение во второе
(3 - ay)² + y² = 8
9 - 6ay+a²y² +y² = 8
y²(a² + 1) - 6ay + 1 = 0
Данное уравнение имеет два решения если дискриминант больше нуля D > 0
D = 36a² - 4(a² + 1) = 36a² - 4a² - 4 = 32a² - 4 = 4(8a²-1)
8a² - 1 > 0
a² > 1/8
если a ∈ (-oo;-1/(2√2))U(1/(2√2);+oo)
Во второй системе подставим первое уравнение во второе
(3a - ay)²+ y² = 8
9a² - 6a²y + a²y² + y² = 8
y²(a² + 1) - 6a²x + 9a² - 8 =0
Данное уравнение имеет два решения если дискриминант больше нуля
D>0
D = 36a⁴ - 4(a²+1)(9a²-8) = 36a⁴ - 4(9a⁴+a²-8)=36a⁴ - 36a⁴ -4a² +32=
= 32 - 4a² =4(8 - a²)
8 - a² > 0
a² < 8 если a∈(-2√2;2√2)
Пересечение интервалов решений двух систем уравнений является интервал a∈(-2√2;-1/(2√2))U(1/(2√2);2√2)
Ответ :a∈(-2√2;-1/(2√2))U(1/(2√2);2√2)


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili