
Вопрос задан 03.05.2020 в 01:44.
Предмет Математика.
Спрашивает Прокопенко Иван.
Сумма трех чисел образуют арифметическую прогрессию. Сумма этих чисел равна 3, а сумма их кубов
равна 57. Найдите эти числа.

Ответы на вопрос

Отвечает Сибагатова Оксана.
Обозначим 3 числа: X, Y, ZТ. к. они образуют арифметическую прогрессию:
X = aY = a + bZ = a + 2bИх сумма:
X + Y + Z = 3 (a + b) = 3Значит: a + b = 1b = 1 - a
Сумма их кубов:a^3 + (a + b)^3 + (a + 2b)^3 = 57подставим сюда b = 1 - aa^3 + (a + 1 - a)^3 + (a + 2 - 2a)^3 = 57a^3 + 1 + 8 - 12a + 6a^2 - a^3 = 576a^2 - 12a = 48a^2 - 2a = 8a^2 - 2a + 1 = 9(a - 1)^2 = 9a - 1 = (+/-)3a = 1(+/-) 3b = 1 - a
b = (-/+)4получили два решения: a = 4, b = -3 и a = -2, b = 3Ответ:
X = 4, Y = 1, Z = -2X = -2, Y = 1, Z = 4
X = aY = a + bZ = a + 2bИх сумма:
X + Y + Z = 3 (a + b) = 3Значит: a + b = 1b = 1 - a
Сумма их кубов:a^3 + (a + b)^3 + (a + 2b)^3 = 57подставим сюда b = 1 - aa^3 + (a + 1 - a)^3 + (a + 2 - 2a)^3 = 57a^3 + 1 + 8 - 12a + 6a^2 - a^3 = 576a^2 - 12a = 48a^2 - 2a = 8a^2 - 2a + 1 = 9(a - 1)^2 = 9a - 1 = (+/-)3a = 1(+/-) 3b = 1 - a
b = (-/+)4получили два решения: a = 4, b = -3 и a = -2, b = 3Ответ:
X = 4, Y = 1, Z = -2X = -2, Y = 1, Z = 4


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili