
Один биолог открыл удивительную разновидность амёб. Каждая из них через 1 минуту делилась на две. В
пробирку биолог кладёт амёбу , и ровно через час пробирка оказывается заполненной амёбами, Сколько времени потребуется , чтобы вся пробирка заполнилась амёбами, если в неё вначале положить не одну а четыре амебы?

Ответы на вопрос




The Biology of Amoebas
Amoebas are single-celled organisms that belong to the phylum Amoebozoa. They are known for their ability to change shape and move using pseudopods, which are temporary extensions of their cytoplasm. Amoebas can be found in various environments, including freshwater, soil, and marine habitats.
The Discovery of a Unique Amoeba Variant
One biologist made an astonishing discovery of a particular variant of amoebas. These amoebas have a unique characteristic: they divide into two every minute. This means that each amoeba will split into two identical daughter cells after exactly one minute.
Filling a Test Tube with Amoebas
To observe the growth of these amoebas, the biologist places a single amoeba into a test tube. After precisely one hour, the test tube is completely filled with amoebas.
Time Required to Fill the Test Tube
Now, let's calculate how much time it would take to fill the test tube if instead of starting with one amoeba, the biologist initially places four amoebas into the test tube.
Since each amoeba divides into two every minute, the number of amoebas in the test tube will double every minute. Therefore, the number of amoebas in the test tube after each minute can be represented by the equation:
Number of amoebas = Initial number of amoebas * 2^t
Where: - Number of amoebas is the total number of amoebas in the test tube after time t. - Initial number of amoebas is the number of amoebas initially placed in the test tube. - t is the time in minutes.
Let's calculate the time required to fill the test tube with amoebas starting from four amoebas:
Number of amoebas = 4 * 2^t
To find the time required to fill the test tube, we need to solve the equation for t when the number of amoebas is equal to the capacity of the test tube.
Since the test tube is filled after one hour (60 minutes), we can set up the equation:
4 * 2^t = Capacity of the test tube
Simplifying the equation, we have:
2^t = Capacity of the test tube / 4
Taking the logarithm base 2 of both sides, we get:
t = log2(Capacity of the test tube / 4)
Therefore, to find the time required to fill the test tube with amoebas starting from four amoebas, we need to calculate the logarithm base 2 of the capacity of the test tube divided by 4.
Please provide the capacity of the test tube, and I will calculate the time required to fill it with amoebas starting from four amoebas.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili