Вопрос задан 20.01.2020 в 22:28. Предмет Математика. Спрашивает Тактаулова Асель.

Запиши несколько значений переменной, при которых неравенства будут верными.x>7 y<9

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Олина Инга.
Х>7, у<9, то есть нужно найти общее значение этих цифр  7*9=63, значит, 63> 7, то соответственно 7< 9.   Я думаю что так, потом напиши правильный ответ.

0 0
Отвечает Ююкина Поля.
Х=7, если х=7, х=-7+14. и еще так можно придумать, сама разберешься, и с 9 тоже самое

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить неравенство \(x > 7 + y < 9\), давайте разберемся с каждым из них по отдельности.

1. \(x > 7 + y\) 2. \(7 + y < 9\)

Рассмотрим первое неравенство:

\[x > 7 + y\]

Чтобы найти значения переменной \(x\), давайте предположим значение переменной \(y\) и выберем несколько примеров:

- Пусть \(y = 0\), тогда \(x > 7 + 0\), что приводит к \(x > 7\). - Пусть \(y = 2\), тогда \(x > 7 + 2\), что приводит к \(x > 9\). - Пусть \(y = -1\), тогда \(x > 7 + (-1)\), что приводит к \(x > 6\).

Рассмотрим второе неравенство:

\[7 + y < 9\]

Чтобы найти значения переменной \(y\), давайте предположим значение переменной \(x\) и выберем несколько примеров:

- Пусть \(x = 8\), тогда \(7 + y < 9\) приводит к \(y < 2\). - Пусть \(x = 10\), тогда \(7 + y < 9\) приводит к \(y < 2\). - Пусть \(x = 6\), тогда \(7 + y < 9\) приводит к \(y < 2\).

Таким образом, для первого неравенства \(x > 7 + y\) можно выбрать, например, \(x > 9\) или \(x > 6\), а для второго неравенства \(7 + y < 9\) можно выбрать, например, \(y < 2\). Таким образом, одним из возможных решений будет, например, \(x > 9\) и \(y < 2\).

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос