
Натуральне число у 14 разів більше ніж число,утворене з нього відкиданням останньоі цифри .Скільки
чисел володіють такою властивістю

Ответы на вопрос




Натуральне число у 14 разів більше ніж число, утворене з нього відкиданням останньої цифри. Скільки чисел володіють такою властивістю?
Щоб знайти числа, які задовольняють цій властивості, спочатку розглянемо, як утворюється число, утворене з натурального числа після відкидання останньої цифри. Нехай наше натуральне число буде позначатися як "N". Якщо ми відкинемо останню цифру числа "N", отримаємо число, яке будемо позначати як "M".
За умовою задачі, натуральне число "N" є 14 разів більше за число "M". Математично це можна записати як:
N = 14M
Тепер ми можемо розв'язати це рівняння, щоб знайти значення числа "M". Для цього поділимо обидві частини рівняння на 14:
M = N / 14
Отже, число "M" буде дорівнювати частці від ділення числа "N" на 14.
Тепер, щоб знайти кількість чисел, які задовольняють цій властивості, нам потрібно знайти всі можливі значення числа "M" і порахувати їх.
Примітка: Зверніть увагу, що в умові задачі не вказано межі для числа "N". Тому ми не можемо точно сказати, скільки чисел задовольняють цю властивість без додаткової інформації.
Якщо у вас є конкретні значення для числа "N", будь ласка, надайте їх, і ми зможемо розрахувати відповідь для вас.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili