Вопрос задан 18.01.2020 в 21:45. Предмет Математика. Спрашивает Яресько Мирослава.

4 7 5 2) (16 -х):13-- = -- :10 -- ; 7 9 9 11 3 4) (6,5+х): 0,475=1 -- : -- . 9 28

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Райский Вова.

2) 16-х=13.4/7 * 7/9 : 10.5/9

    16-х=95/7 * 7/9 * 9/95

    16-х=1

     х=15

 

4) Возможно, в этом задании нужна дробь 1.11/19, а не 1.11/9, тогда

    6,5+х=0,475 * 1.11/19 : 3/28

    6,5+х=475/1000 * 30/19 * 28/3

    6,5+х=7

    х=0,5

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the given equation, let's break it down step by step:

Step 1: Simplify the expression inside the parentheses. 4 + 7 + 5 + 2 = 18

Step 2: Simplify the expression (16 - x). There is no further simplification we can do at this point, so we keep it as (16 - x).

Step 3: Simplify the expression (16 - x) / 13. We divide (16 - x) by 13, which gives us (16 - x)/13.

Step 4: Simplify the expression (16 - x)/13. We have an expression with a negative sign preceding a parentheses, which means we need to distribute the negative sign to each term inside the parentheses. (16 - x)/13 = - (x - 16)/13

Step 5: Simplify the expression (x - 16)/13 - (x - 16)/10. To subtract fractions, we need a common denominator. The least common multiple of 13 and 10 is 130, so we multiply the numerator and denominator of each fraction by the appropriate factor to get a common denominator of 130. [(x - 16) * 10]/130 - [(x - 16) * 13]/130 = (10x - 160)/130 - (13x - 208)/130

Step 6: Simplify the expression (10x - 160)/130 - (13x - 208)/130. Since the fractions have the same denominator, we can combine the numerators and write it as a single fraction. (10x - 160 - 13x + 208)/130 = (-3x + 48)/130

Step 7: Simplify the expression (6.5 + x)/0.475. Divide (6.5 + x) by 0.475. (6.5 + x)/0.475 = 13.68x + 30.53/0.475

Step 8: Simplify the expression (13.68x + 30.53)/0.475 - 1. Multiply both the numerator and denominator of the fraction by 100 to get rid of the decimal. [(13.68x + 30.53) * 100]/(0.475 * 100) - 1 = (1368x + 3053 - 100)/(47.5 * 100) - 1 = (1368x + 2953)/(47.5) - 1

Step 9: Simplify the expression (1368x + 2953)/47.5 - 1. To subtract fractions, we need a common denominator. The common denominator for 47.5 and 1 is 47.5, so we multiply the numerator and denominator of each fraction by the appropriate factor to get a common denominator of 47.5. [(1368x + 2953)/47.5] - [1 * (47.5)/47.5] = (1368x + 2953 - 47.5)/47.5 = (1368x + 2905.5)/47.5

Step 10: Solve the equation (1368x + 2905.5)/47.5 = (-3x + 48)/130. To solve this equation, we need to isolate x. First, cross-multiply to get rid of the fractions. 47.5 * (-3x + 48) = 130 * (1368x + 2905.5) -142.5x + 2280 = 178240x + 377165.5

Step 11: Combine like terms and solve for x. -142.5x - 178240x = 377165.5 - 2280 -32022.5x = 374885.5 x = 374885.5 / -32022.5

Simplifying the division, we find: x ≈ -11.70

Therefore, the solution to the equation is x ≈ -11.70.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос