Вопрос задан 18.01.2020 в 17:49. Предмет Математика. Спрашивает Ваянина Ангелиночка.

Задача: Три эскимоса строят хижину из ледяных блоков. После окончания стройки выяснилось: самый

сильный эскимос принес половину всех ледяных блоков и еще 2 блока. Средний по силе эскимос принес половину остальных блоков и еще 2 блока.Самый слабый эскимос принес оставшиеся 20 блоков. Сколько всего ледяных блоков ушло на строительство хижины? Надо с решением. Пожалуйста, помогите!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Котик Юлия.
Задачи такого типа решаются с конца.
|_______________________|__|___________|__|__________|
                                                       2                             2        20
20+2=22 блока половина остатка после сильного 
22*2+2=46 блоков половина всех блоков
46*2=92 блока ушло на строительство хижины

Ответ 92 блока ушло на строительство хижины
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим количество ледяных блоков, которые принес каждый эскимос:

- Пусть \( x \) - общее количество ледяных блоков. - Самый сильный эскимос принес \(\frac{1}{2}x + 2\) блока. - Средний по силе эскимос принес \(\frac{1}{4}x + 2\) блока. - Самый слабый эскимос принес 20 блоков.

Условие гласит, что сумма блоков, принесенных каждым эскимосом, равна общему количеству блоков:

\[ \left( \frac{1}{2}x + 2 \right) + \left( \frac{1}{4}x + 2 \right) + 20 = x \]

Давайте решим это уравнение:

\[ \frac{1}{2}x + \frac{1}{4}x + 2 + 2 + 20 = x \]

Упростим выражение:

\[ \frac{3}{4}x + 24 = x \]

Выразим \(x\):

\[ \frac{1}{4}x = 24 \]

Умножим обе стороны на 4:

\[ x = 4 \times 24 = 96 \]

Итак, общее количество ледяных блоков, ушедших на строительство хижины, равно 96 блоков.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос