
Найти производную степенной функции: y=sqrt(2x)


Ответы на вопрос







Finding the Derivative of the Power Function: y = sqrt(2x)
To find the derivative of the power function y = sqrt(2x), we can use the power rule of differentiation. The power rule states that if we have a function of the form y = x^n, where n is a constant, then the derivative of y with respect to x is given by:
dy/dx = n * x^(n-1)
In this case, we have y = sqrt(2x), which can be written as y = (2x)^(1/2). Applying the power rule, we get:
dy/dx = (1/2) * (2x)^(1/2 - 1)
Simplifying further, we have:
dy/dx = (1/2) * (2x)^(-1/2)
Now, let's simplify the expression (2x)^(-1/2). Using the property (a^m)^n = a^(m*n), we can rewrite it as:
(2x)^(-1/2) = 2^(-1/2) * x^(-1/2)
Simplifying further, we have:
(2x)^(-1/2) = (1/sqrt(2)) * (1/sqrt(x))
Substituting this back into the derivative expression, we get:
dy/dx = (1/2) * (1/sqrt(2)) * (1/sqrt(x))
Therefore, the derivative of the power function y = sqrt(2x) is:
dy/dx = (1/2) * (1/sqrt(2)) * (1/sqrt(x))
Please note that this is a general expression for the derivative of the power function y = sqrt(2x). If you have a specific value of x, you can substitute it into the expression to find the derivative at that point.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili