Найти производную степенной функции: y=sqrt(2x)
Ответы на вопрос
        
        
            Finding the Derivative of the Power Function: y = sqrt(2x)
To find the derivative of the power function y = sqrt(2x), we can use the power rule of differentiation. The power rule states that if we have a function of the form y = x^n, where n is a constant, then the derivative of y with respect to x is given by:
dy/dx = n * x^(n-1)
In this case, we have y = sqrt(2x), which can be written as y = (2x)^(1/2). Applying the power rule, we get:
dy/dx = (1/2) * (2x)^(1/2 - 1)
Simplifying further, we have:
dy/dx = (1/2) * (2x)^(-1/2)
Now, let's simplify the expression (2x)^(-1/2). Using the property (a^m)^n = a^(m*n), we can rewrite it as:
(2x)^(-1/2) = 2^(-1/2) * x^(-1/2)
Simplifying further, we have:
(2x)^(-1/2) = (1/sqrt(2)) * (1/sqrt(x))
Substituting this back into the derivative expression, we get:
dy/dx = (1/2) * (1/sqrt(2)) * (1/sqrt(x))
Therefore, the derivative of the power function y = sqrt(2x) is:
dy/dx = (1/2) * (1/sqrt(2)) * (1/sqrt(x))
Please note that this is a general expression for the derivative of the power function y = sqrt(2x). If you have a specific value of x, you can substitute it into the expression to find the derivative at that point.
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			