
На одной карточке нарисован окунь, на второй щука, на третьей - воробей, на четвертой - скворец.
Наугад выбираются 2 карточки. какова вероятность того, что на карточках букдут изображения двух рыб? двух птиц? рыбы и птицы?

Ответы на вопрос




Probability of drawing two fish cards
To calculate the probability of drawing two fish cards, we need to determine the total number of possible outcomes and the number of favorable outcomes.
Given that there are four cards with different drawings (perch, pike, sparrow, and starling), the total number of possible outcomes is the number of ways to choose 2 cards out of 4, which can be calculated using the combination formula:
Total number of possible outcomes = C(4, 2) = 4! / (2! * (4-2)!) = 6
Now, let's determine the number of favorable outcomes, which is the number of ways to choose 2 fish cards out of the 4 available fish cards (perch and pike). This can be calculated using the combination formula as well:
Number of favorable outcomes = C(2, 2) = 2! / (2! * (2-2)!) = 1
Therefore, the probability of drawing two fish cards is:
Probability = Number of favorable outcomes / Total number of possible outcomes = 1 / 6 = 1/6 ≈ 0.1667
So, the probability of drawing two fish cards is approximately 0.1667 or 16.67%.
Probability of drawing two bird cards
To calculate the probability of drawing two bird cards, we can follow the same approach as above.
The total number of possible outcomes is still the number of ways to choose 2 cards out of 4, which is 6.
The number of favorable outcomes is the number of ways to choose 2 bird cards out of the 2 available bird cards (sparrow and starling), which is 1.
Therefore, the probability of drawing two bird cards is:
Probability = Number of favorable outcomes / Total number of possible outcomes = 1 / 6 = 1/6 ≈ 0.1667
So, the probability of drawing two bird cards is approximately 0.1667 or 16.67%.
Probability of drawing one fish card and one bird card
To calculate the probability of drawing one fish card and one bird card, we need to determine the total number of possible outcomes and the number of favorable outcomes.
The total number of possible outcomes is still 6, as we discussed earlier.
The number of favorable outcomes is the number of ways to choose 1 fish card out of 2 and 1 bird card out of 2. This can be calculated using the multiplication principle:
Number of favorable outcomes = C(2, 1) * C(2, 1) = (2! / (1! * (2-1)!)) * (2! / (1! * (2-1)!)) = 2 * 2 = 4
Therefore, the probability of drawing one fish card and one bird card is:
Probability = Number of favorable outcomes / Total number of possible outcomes = 4 / 6 = 2/3 ≈ 0.6667
So, the probability of drawing one fish card and one bird card is approximately 0.6667 or 66.67%.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili