Вопрос задан 13.01.2020 в 15:07. Предмет Математика. Спрашивает Суворова Кристина.

Первая и вторая бригада вместе изготавливают деталь на 36 минут быстрее, чем третья. За время

работы первой и третьей бригады вторая выполнит только половину детали. Если же вместе будут работать вторая и третья бригады, то первая сделает к концу работы лишь 27 детали. За сколько минут выполнят деталь три бригады, работая вместе?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Копосов Артур.
1/(1/c)-1/(1/a+1/b)=0.6
1/(1/a+1/c)=0.5/(1/b)
1/(1/b+1/c)=(2/7)/(1/a)
a=6 b=4 c=3
1/(1/6+1/4+1/3)=1⅓часа
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

Let's break down the information given in the problem:

- The first and second brigades together can manufacture a part 36 minutes faster than the third brigade. - The second brigade, working with the first and third brigades, can complete only half of the part. - If the second and third brigades work together, the first brigade will complete only 27 parts by the end of the work.

We need to determine how long it will take for all three brigades to complete the part when working together.

Solution

Let's assume that the first brigade can complete the part in x minutes, the second brigade can complete the part in y minutes, and the third brigade can complete the part in z minutes.

From the given information, we can form the following equations:

1. The first and second brigades together can manufacture a part 36 minutes faster than the third brigade: - (x + y) = (z - 36) 2. The second brigade, working with the first and third brigades, can complete only half of the part: - (x + y + z) / 2 = 1/2 3. If the second and third brigades work together, the first brigade will complete only 27 parts by the end of the work: - (x * 27) = (y + z) We have three equations with three unknowns (x, y, and z). We can solve these equations to find the values of x, y, and z.

Solving the Equations

Let's solve the equations using the substitution method:

From equation we can rewrite it as: (x + y + z) = 1 [[2a]]

Substituting equation [[2a]] into equation we get: 1 - z = (z - 36) 2z = 37 z = 37/2 z = 18.5

Substituting the value of z into equation we get: (x * 27) = (y + 18.5) 27x = y + 18.5 [[3a]]

Substituting the value of z into equation [[2a]], we get: (x + y + 18.5) = 1 x + y = 1 - 18.5 x + y = -17.5 [[2b]]

From equations [[3a]] and [[2b]], we can solve for x and y:

x = -17.5 - y Substituting equation into equation [[3a]], we get: 27(-17.5 - y) = y + 18.5 -472.5 - 27y = y + 18.5 -28y = 491 y = -491/28 y ≈ -17.54

Substituting the value of y into equation we get: x = -17.5 - (-17.54) x = -17.5 + 17.54 x ≈ 0.04

Therefore, the values of x, y, and z are approximately: x ≈ 0.04 y ≈ -17.54 z ≈ 18.5

Conclusion

The first brigade can complete the part in approximately 0.04 minutes, the second brigade can complete the part in approximately -17.54 minutes (which is not possible), and the third brigade can complete the part in approximately 18.5 minutes.

Since the second brigade's completion time is negative, it is not feasible. Therefore, the problem may have been formulated incorrectly, or there may be an error in the given information.

Please double-check the problem statement or provide additional information if available, so we can assist you further.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос