Вопрос задан 11.01.2020 в 04:06. Предмет Математика. Спрашивает Казымов Глеб.

Первый стрелок попадает в цель с вероятностью 0,4, второй с вероятностью 0,8. каждый из стрелков

сделал по выстрелу в мишень. определить вероятность попадания в мишень первым стрелком при условии , что мишень была поражена 1 раз.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Воробьёв Ростик.
Вероятности попадания:
p_1=0,4 \\ p_2=0,8
Вероятности промахов:
q_1=0,6 \\ q_2=0,2

p=p_1q_1=0,4\cdot 0,2=0,08

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that the first shooter hits the target with a probability of 0.4, and the second shooter hits the target with a probability of 0.8. We need to determine the probability of the first shooter hitting the target given that the target was hit once.

Solution

To solve this problem, we can use conditional probability. Let's denote the event that the first shooter hits the target as A and the event that the target was hit once as B. We want to find the probability of A given B, denoted as P(A|B).

We can use Bayes' theorem to calculate P(A|B):

P(A|B) = P(A ∩ B) / P(B)

To calculate P(A ∩ B), we need to find the probability that both the first shooter hits the target and the target was hit once. Since the target was hit once, it means either the first shooter hit the target and the second shooter missed, or the first shooter missed and the second shooter hit.

P(A ∩ B) = P(A) * P(B|A) + P(A') * P(B|A')

Where A' represents the complement of A (i.e., the first shooter misses the target), and P(B|A) and P(B|A') represent the probabilities of the target being hit once given that the first shooter hits or misses, respectively.

Let's calculate these probabilities step by step:

1. P(A) = 0.4 (given) 2. P(B|A) = 0.8 (given that the second shooter hits the target with a probability of 0.8) 3. P(A') = 1 - P(A) = 1 - 0.4 = 0.6 4. P(B|A') = 0.2 (given that the second shooter misses the target with a probability of 0.2)

Now we can substitute these values into the formula:

P(A|B) = (P(A) * P(B|A)) / (P(A) * P(B|A) + P(A') * P(B|A'))

P(A|B) = (0.4 * 0.8) / (0.4 * 0.8 + 0.6 * 0.2)

Calculating this expression gives us the probability of the first shooter hitting the target given that the target was hit once.

Let's calculate it:

P(A|B) = (0.32) / (0.32 + 0.12)

P(A|B) = 0.32 / 0.44

P(A|B) ≈ 0.7273

Therefore, the probability of the first shooter hitting the target given that the target was hit once is approximately 0.7273.

Answer

The probability of the first shooter hitting the target given that the target was hit once is approximately 0.7273.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос