
А)косинус х -2 синус х=0б)косинус в квадрате х +4 косинус х=0в)синус 3х - синус 7х=0г)7синус2х- 2
синус х=0 д)синус 2 х+10косинус в квадрате х=0е)5 косинус 2х-14косинус в квадрате х+8=0решите плииз .кто решит на счет деньги кину((((((((((((((((((((((

Ответы на вопрос

Последние 2 ещё в процессе...



a) косинус х - 2 синус х = 0
To solve the equation cos(x) - 2sin(x) = 0, we can use the trigonometric identity sin^2(x) + cos^2(x) = 1. Rearranging the equation, we get:
cos(x) = 2sin(x)
Substituting cos(x) = √(1 - sin^2(x)), we have:
√(1 - sin^2(x)) = 2sin(x)
Squaring both sides of the equation, we get:
1 - sin^2(x) = 4sin^2(x)
Rearranging the equation, we have:
5sin^2(x) = 1
Dividing both sides by 5, we get:
sin^2(x) = 1/5
Taking the square root of both sides, we have:
sin(x) = ±√(1/5)
Taking the inverse sine (sin^(-1)) of both sides, we get:
x = sin^(-1)(±√(1/5))
The solutions for x will depend on the range of x that you are considering. The inverse sine function has multiple solutions within a given range. Please specify the range of x for a more precise answer.
b) косинус в квадрате х + 4 косинус х = 0
To solve the equation cos^2(x) + 4cos(x) = 0, we can factor out a common term:
cos(x)(cos(x) + 4) = 0
This equation will be satisfied if either cos(x) = 0 or cos(x) + 4 = 0.
For cos(x) = 0, the solutions are x = π/2 + nπ and x = 3π/2 + nπ, where n is an integer.
For cos(x) + 4 = 0, we have cos(x) = -4, which has no real solutions since the cosine function has a maximum value of 1 and a minimum value of -1.
Therefore, the solutions for the equation are x = π/2 + nπ and x = 3π/2 + nπ, where n is an integer.
c) синус 3х - синус 7х = 0
To solve the equation sin(3x) - sin(7x) = 0, we can use the trigonometric identity sin(a) - sin(b) = 2cos((a+b)/2)sin((a-b)/2). Applying this identity, we have:
2cos(5x/2)sin(-2x/2) = 0
Simplifying further, we get:
-2cos(5x/2)sin(x) = 0
This equation will be satisfied if either cos(5x/2) = 0 or sin(x) = 0.
For cos(5x/2) = 0, the solutions are x = π/5 + nπ, where n is an integer.
For sin(x) = 0, the solutions are x = nπ, where n is an integer.
Therefore, the solutions for the equation are x = π/5 + nπ and x = nπ, where n is an integer.
d) 7синус2х - 2 синус х = 0
To solve the equation 7sin(2x) - 2sin(x) = 0, we can factor out a common term:
sin(x)(7sin(x) - 2) = 0
This equation will be satisfied if either sin(x) = 0 or 7sin(x) - 2 = 0.
For sin(x) = 0, the solutions are x = nπ, where n is an integer.
For 7sin(x) - 2 = 0, we have sin(x) = 2/7, which has no real solutions since the sine function has a maximum value of 1 and a minimum value of -1.
Therefore, the solutions for the equation are x = nπ, where n is an integer.
e) синус 2 х + 10косинус в квадрате х = 0
To solve the equation sin(2x) + 10cos^2(x) = 0, we can use the trigonometric identity sin(2a) = 2sin(a)cos(a). Applying this identity, we have:
2sin(x)cos(x) + 10cos^2(x) = 0
Factoring out a common term, we get:
cos(x)(2sin(x) + 10cos(x)) = 0
This equation will be satisfied if either cos(x) = 0 or 2sin(x) + 10cos(x) = 0.
For cos(x) = 0, the solutions are x = π/2 + nπ and x = 3π/2 + nπ, where n is an integer.
For 2sin(x) + 10cos(x) = 0, we can divide both sides by 2 to simplify the equation:
sin(x) + 5cos(x) = 0
This equation does not have a simple algebraic solution. However, it can be solved numerically or graphically.
Therefore, the solutions for the equation are x = π/2 + nπ and x = 3π/2 + nπ, where n is an integer, and the equation sin(x) + 5cos(x) = 0 does not have a simple algebraic solution.
f) 5 + косинус 2х - 14косинус в квадрате х + 8 = 0
To solve the equation 5 + cos(2x) - 14cos^2(x) + 8 = 0, we can simplify it by combining like terms:
cos(2x) - 14cos^2(x) + 13 = 0
This equation does not have a simple algebraic solution. However, it can be solved numerically or graphically.
Therefore, the equation cos(2x) - 14cos^2(x) + 13 = 0 does not have a simple algebraic solution.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili