Вопрос задан 01.07.2019 в 12:47. Предмет Математика. Спрашивает Нурланулы Абдулл.

Из всех прямоугольников, у которых две вершины лежат на интервале (-2;2) оси абсцисс, а две другие

– на графике функции y=4-x^2 найти прямоугольник наибольшей площади и вычислить эту площадь.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лихачева Лиза.
Сразу про наибольшую площадь - она у квадрата  - аксиома - без доказательства.
Делаем  рисунок - график функции
Y = - x² + 4 - парабола, ветви вниз, вершина в точке (0;4)
Рисунок - в приложении.
Из него следует, что у вершины квадрат координата - y = 2*х.
Далее - подставим в уравнение функции.
2*x = -x² + 4
Переписали в удобный вид и получили квадратное уравнение.
- x²- 2x + 4 = 0
Решили и нашли
D= 20 и х1 = 1,236 
Сторона квадрата - a = 2*х = 2.472
И площадь 
S = a² ≈ 6.11 - ОТВЕТ
Числа не очень красивые, но правильные.
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос