
Вопрос задан 25.06.2019 в 20:28.
Предмет Математика.
Спрашивает Некрасов Никита.
В правильной шестиугольной пирамиде SABCDEF со стороной основания 2 и боковым ребром 3 точка М
делит ребро SD в отношении 1:2 (считая от вершины S). Найдите угол между прямой BM и плоскостью AEC. Ответ: arctg(sqrt(65))/13 sqrt(65) - корень из 65

Ответы на вопрос

Отвечает Кукса Владислав.
Сторона основания а=2 равна полудиагонали
боковое ребро 3
высота пирамиды по теореме пифагора h=корень(5)
решу методом координат
А=(-2;0;0) B=(-1;корень(3);0) С=(1;корень(3);0) Д=(2;0;0)
S=(0;0;корень(5)) M=(2-2*2/3;0;корень(5)*2/3)=(2/3;0;корень(5)*2/3)
K-проекция M на плоскость авсде
К=(2/3;0;0)
ВК =( 5/3; -корень(3); 0)
|ВК|=корень(25/9+3)=корень(52/9)
ВМ =( 5/3; -корень(3); корень(5)*2/3)
|ВМ|=корень(25/9+3+5*4/9)=корень(8)
(ВМ*ВК)=25/9+3+0 =52/9 = |Вк|*|ВМ|*соs(B)=
корень(52/9)*корень(8)*соs(B)
cos(B)=корень(52/72)=корень(13/18)
В= arccos(корень(13/18))
боковое ребро 3
высота пирамиды по теореме пифагора h=корень(5)
решу методом координат
А=(-2;0;0) B=(-1;корень(3);0) С=(1;корень(3);0) Д=(2;0;0)
S=(0;0;корень(5)) M=(2-2*2/3;0;корень(5)*2/3)=(2/3;0;корень(5)*2/3)
K-проекция M на плоскость авсде
К=(2/3;0;0)
ВК =( 5/3; -корень(3); 0)
|ВК|=корень(25/9+3)=корень(52/9)
ВМ =( 5/3; -корень(3); корень(5)*2/3)
|ВМ|=корень(25/9+3+5*4/9)=корень(8)
(ВМ*ВК)=25/9+3+0 =52/9 = |Вк|*|ВМ|*соs(B)=
корень(52/9)*корень(8)*соs(B)
cos(B)=корень(52/72)=корень(13/18)
В= arccos(корень(13/18))


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili