
Вопрос задан 22.05.2019 в 04:41.
Предмет Математика.
Спрашивает Курилович Ксюшка.
(n^5-n) делится на 30


Ответы на вопрос

Отвечает Занковец Максим.
(n-1)·n·(n-1)- три последовательных натуральных числа, среди них одно обязательно кратно 3, одно кратно 2, значит все произведение кратно 6
осталось доказать кратность 5
Среди любых пяти последовательных натуральных чисел, одно кратно 5, это число 5k.
Второе дает при делении на 5 остаток 1, это число 5k+1
Третье при делении на 5 дает остаток 2, это число 5k+2
Четвертое при делении на 5 дает остаток 3, это число 5k+3
Пятое при делении на 5 дает остаток 4, это число 5k+4
1)если n=5k, то произведение (n-1)·n·(n+1) кратно 5
2)если n=5k+1, то (n-1)=5k и произведение (n-1)·n·(n+1) кратно 5
3)если n=5k+2, то (n²+1)=(5k+2)²+1=25k²+20k+4+1=25k²+20k+5=5(5k²+4k+1) кратно 5 и произведение (n-1)·n·(n+1)(n²+1) кратно 5
4)если n=5k+3, то (n²+1)=(5k+3)²+1=25k²+30k+9+1=25k²+30k+10=5(5k²+6k+2) кратно 5 и произведение (n-1)·n·(n+1)(n²+1) кратно 5
5) если n=5k+4, то n+1=5k+4+1=5k+5=5·(k+1) - кратно 5 и произведение
(n-1)n(n+1) кратно 5.
Ответ Все случаи рассмотрены. Доказано


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili