Вопрос задан 16.05.2018 в 21:26. Предмет Математика. Спрашивает Mihhailova Lera.

Вероятность того, что деталь нестандартная, равна 0,1. Найти вероятность того, что среди 500

случайно отобранных деталей бракованными окажутся от 7 до 10
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мелихова Катя.

Решение ищем по формуле Муавра-Лапласа. Обозначим р=0,1 (вероятность успеха) , n=500 (количество испытаний). Матожидание числа опытов М=n*p=500*0,1=50, дисперсия D=n*p*(1-p)=50*0,9=45. (50-10)/(45^0.5)>P>(50-7)/(45^0.5), то есть 6,41>P>5,963.
Р=1/(6,28^0,5)интеграл в пределах от 5,963 до 6,41 exp(-x^2/2)=1,166*10^-9. Интеграл табличный, решается через табулированную функцию. Требуемые значения случайной величины выходят за границу 4* ско (ско- среднеквадратическое отклонение, равно корню квадратному из дисперсии), поэтому значение вероятности и такое маленькое.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос