Вопрос задан 12.05.2019 в 00:50. Предмет Математика. Спрашивает Литвинов Даниил.

Сколькими способами можно распределить 6 различ​ных книг между тремя учениками так, чтобы каждый

получил 2 книги? (Ответ: 90.)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смагулова Дильнара.
из 6 книг 2 книги можно выбрать 15-ю способами(комбинация)а потом 3 вещи между 3-я людьми 3*2*1=6. 15*6=90
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти количество способов распределить 6 различных книг между тремя учениками так, чтобы каждый получил 2 книги, мы можем использовать формулу сочетания.

Сначала выберем 2 книги для первого ученика из 6. Это можно сделать 6 способами.

После того, как первому ученику были выданы 2 книги, осталось 4 книги. Выберем 2 книги для второго ученика из оставшихся 4. Это можно сделать 4 способами.

После того, как первым двум ученикам были выданы по 2 книги, осталось 2 книги. Эти две книги автоматически попадают к третьему ученику.

Количество способов выбрать 2 книги для первого ученика, затем 2 книги для второго ученика и оставить 2 книги для третьего ученика равно произведению количества способов для каждого шага: 6 * 4 = 24.

Однако, порядок, в котором выделяются книги для первого и второго учеников, не имеет значения, так как каждый ученик все равно получит 2 книги. Поэтому мы должны поделить результат на число перестановок этих двух шагов, то есть на 2!.

Итоговое количество способов будет: 24 / 2! = 24 / 2 = 12.

Таким образом, количество способов распределить 6 различных книг между тремя учениками так, чтобы каждый получил 2 книги, равно 12.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос