
Скорость точки движущейся прямолинейно, задана уравнением V=(6t^2-4t-10)м/с. Вычислить её путь за 4
секунды от начала движения

Ответы на вопрос




Calculation of the Path for a Moving Point
To calculate the path of a point moving in a straight line, we need to integrate the given velocity equation over the desired time interval. In this case, the velocity equation is given as V = 6t^2 - 4t - 10 m/s, and we want to find the path for a time interval of 4 seconds from the start of motion.
To calculate the path, we need to integrate the velocity equation with respect to time. The integral of velocity gives us the displacement or path traveled by the point. Let's perform the integration:
∫(6t^2 - 4t - 10) dt
The integral of 6t^2 with respect to t is (2t^3), the integral of -4t with respect to t is (-2t^2), and the integral of -10 with respect to t is (-10t). Integrating each term separately, we get:
(2t^3) - (2t^2) - (10t) + C
where C is the constant of integration.
Now, we can substitute the upper and lower limits of integration to find the displacement or path traveled by the point from the start of motion to 4 seconds. Let's substitute t = 4 and t = 0 into the integrated equation:
Path = [(2 * 4^3) - (2 * 4^2) - (10 * 4)] - [(2 * 0^3) - (2 * 0^2) - (10 * 0)]
Simplifying the equation, we get:
Path = (128 - 32 - 40) - (0 - 0 - 0)
Path = 56 meters
Therefore, the path traveled by the point in 4 seconds from the start of motion is 56 meters.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili