
Вопрос задан 10.05.2019 в 12:10.
Предмет Математика.
Спрашивает Жукова Рина.
Через образующую цилиндра проведены две плоскости ,образующие угол в 60'.Сечения цилиндра этими
плоскостями являются квадратами и площадь одного из них равна 4 см^2.Найдите площадь боковой поверхности цилиндра

Ответы на вопрос

Отвечает Лейн Александр.
Через образующую цилиндра проведены две плоскости. Это значит, что
образующая цилиндра является линией их пересечения.
Сечения цилиндра этими плоскостями являются квадратами и площадь одного из них равна 4 см². Это значит, что высота цилиндра h (его образующая) равна 2см, а поскольку эта образующая является общей стороной квадратов, то квадраты равны.
Проведем через точку А, лежащую на окружности основания цилиндра и являющуюся общей с линией пересечения плоскостей, диаметр АВ. Этот диаметр разделит угол между плоскостями на два равных, поскольку хорды АС и АD (стороны равных квадратов) равны.
Радиус ОЕ, перпендикулярный к хорде АС в точке Н, разделит ее пополам.
Итак, мы получили прямоугольный треугольник АОН с углом ОАН=30° и катетом АН=1см. Тогда по Пифагору АО²-ОН²=АН², где ОА=2*ОН.
Отсюда ОН=√3/3, а ОА=R=2√3/3.
Тогда длина окружности основания равна L=2*πR=2*π2√3/3=4π√3/3.
Площадь боковой поверхности цилиндра будет тогда равна Sб=L*h или Sб=8π√3/3.
Ответ: Sб=8π√3/3 ≈14,5 .
образующая цилиндра является линией их пересечения.
Сечения цилиндра этими плоскостями являются квадратами и площадь одного из них равна 4 см². Это значит, что высота цилиндра h (его образующая) равна 2см, а поскольку эта образующая является общей стороной квадратов, то квадраты равны.
Проведем через точку А, лежащую на окружности основания цилиндра и являющуюся общей с линией пересечения плоскостей, диаметр АВ. Этот диаметр разделит угол между плоскостями на два равных, поскольку хорды АС и АD (стороны равных квадратов) равны.
Радиус ОЕ, перпендикулярный к хорде АС в точке Н, разделит ее пополам.
Итак, мы получили прямоугольный треугольник АОН с углом ОАН=30° и катетом АН=1см. Тогда по Пифагору АО²-ОН²=АН², где ОА=2*ОН.
Отсюда ОН=√3/3, а ОА=R=2√3/3.
Тогда длина окружности основания равна L=2*πR=2*π2√3/3=4π√3/3.
Площадь боковой поверхности цилиндра будет тогда равна Sб=L*h или Sб=8π√3/3.
Ответ: Sб=8π√3/3 ≈14,5 .



Отвечает Михеева Аня.
Вот добавил более понятное сечение цилиндра и расчет радиуса без Пифагора.
Да и избавляться от иррациональности в знаменателе нет особого смысла - умножать или делить на корень
Да и избавляться от иррациональности в знаменателе нет особого смысла - умножать или делить на корень


Топ вопросов за вчера в категории Математика

Математика 12

Математика 60

Математика 771

Математика 65

Математика 23
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili