Помогите решить 2cos²x - 5cos(-3π/2 - x) +1 =0. И объясните пожалуйста
Ответы на вопрос
        5cos(-3π/2 - x)=5сos(3π/2+x) в силу четности ф-ии сosx.
по формулам приведения 5сos(3π/2+x) = -5sinx
2cos²x - 5cos(-3π/2 - x) +1 =2cos²x + 5sinx +1
2cos²x + 5sinx +1=0 2(1-sin²x)+5sinx+1=0
2-2sin²x+5sinx+1=0
-2sin²x+5sinx+3=0
2sin²x-5sinx-3=0 D=25+24=49 √D=7
sinx=1/4[5+7]=3>1
sinx=1/4[5-7]=-1/2
x=(-1)ⁿ(-π/6)+πn n∈Z
            To solve the equation 2cos²x - 5cos(-3π/2 + x) + 1 = 0, we can follow these steps:
Step 1: Simplify the equation Step 2: Substitute cos(-3π/2 + x) with sin(x) Step 3: Solve the resulting quadratic equation
Let's go through each step in detail:
Step 1: Simplify the equation
The equation we have is 2cos²x - 5cos(-3π/2 + x) + 1 = 0. To simplify it, we can use the identity cos(-θ) = cos(θ). So, we have:2cos²x - 5cos(3π/2 - x) + 1 = 0
Step 2: Substitute cos(-3π/2 + x) with sin(x)
Using the identity cos(θ) = sin(π/2 - θ), we can rewrite the equation as:2cos²x - 5sin(x) + 1 = 0
Step 3: Solve the resulting quadratic equation
Now, we have a quadratic equation in terms of cos(x). Let's solve it by factoring or using the quadratic formula.2cos²x - 5sin(x) + 1 = 0
To make it easier, let's substitute cos(x) with y:
2y² - 5sin(x) + 1 = 0
Now, we have a quadratic equation in terms of y. Let's solve it:
2y² - 5sin(x) + 1 = 0
The solutions for y can be found using the quadratic formula:
y = (-b ± √(b² - 4ac)) / (2a)
In our case, a = 2, b = -5sin(x), and c = 1. Substituting these values into the quadratic formula, we get:
y = (-(-5sin(x)) ± √((-5sin(x))² - 4(2)(1))) / (2(2))
Simplifying further:
y = (5sin(x) ± √(25sin²(x) - 8)) / 4
Now, we have the solutions for y. To find the solutions for cos(x), we substitute y back into cos(x):
cos(x) = y
cos(x) = (5sin(x) ± √(25sin²(x) - 8)) / 4
Therefore, the solutions for the equation 2cos²x - 5cos(-3π/2 + x) + 1 = 0 are given by the values of x that satisfy the equation:
cos(x) = (5sin(x) ± √(25sin²(x) - 8)) / 4
Please note that this is a general solution, and the specific values of x that satisfy the equation will depend on the range of x and the values of sin(x) that make the equation true.
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			