
C1=2, c n+1= -3cn срочно найти c4


Ответы на вопрос

c3= -3*(-6)=18
c4= -3*18= -54



To find the value of c4, we need to determine the pattern or relationship between the given values of c1, c2, and c3.
From the given information, we have: c1 = 2 c(n+1) = -3cn
To find c4, we can start by substituting the value of n as 3 into the second equation: c(3+1) = -3c(3)
Simplifying this equation, we get: c4 = -3c3
Now, we need to find the value of c3. To do this, we can substitute the value of n as 2 into the second equation: c(2+1) = -3c(2)
Simplifying: c3 = -3c2
Next, we need to find the value of c2. Substituting n = 1 into the second equation: c(1+1) = -3c(1)
Simplifying: c2 = -3c1
Now, we can substitute the values we have found back into the equation for c4: c4 = -3c3 = -3(-3c2) = 9c2
Since we know the value of c1 is 2, we can substitute that into the equation for c2: c2 = -3c1 = -3(2) = -6
Finally, substituting the value of c2 into the equation for c4: c4 = 9c2 = 9(-6) = -54
Therefore, the value of c4 is -54.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili