 
3^(2х+1)+8•3^х -3≥0 Помогите, очень надо
 0
        0
         0
        0
    Ответы на вопрос
 
        3t²+8t-3≥0, 3(t+3)(t-1/3)≥0.
Поскольку t>0, то t+3>3, отсюда t-1/3≥0, т.е.3^x≥1/3, 3^x≥3^(-1),x≥-1, х∈[-1;+∞)
 0
                    0
                     0
                    0
                 
            Solving the Inequality
To solve the inequality 3^(2x+1) + 8 * 3^x - 3 ≥ 0, we can follow these steps:
1. Rewrite the equation using exponent rules: 3^(2x+1) + 8 * 3^x - 3 ≥ 0. 2. Simplify the equation: 3^(2x+1) + 8 * 3^x ≥ 3. 3. Factor out a common term: 3^x(3^x + 8) ≥ 3.
Now, we have a quadratic inequality in terms of 3^x. To solve this inequality, we can consider two cases:
Case 1: 3^x > 0
If 3^x > 0, then we can divide both sides of the inequality by 3^x without changing the direction of the inequality:
3^x(3^x + 8) ≥ 3 3^x + 8 ≥ 3 / 3^x 3^x + 8 ≥ 1 / 3^(−x)
Case 2: 3^x < 0
If 3^x < 0, then we need to flip the direction of the inequality when dividing by 3^x:
3^x(3^x + 8) ≤ 3 3^x + 8 ≤ 1 / 3^(−x)
Now, let's solve each case separately.
Case 1: 3^x > 0
If 3^x > 0, we can divide both sides of the inequality by 3^x:
3^x + 8 ≥ 1 / 3^(−x) 3^x + 8 ≥ 3^(x)
Now, we have a quadratic inequality in terms of 3^x. To solve this, we can rewrite the inequality as:
3^(x) - 3^x + 8 ≥ 0 2 * 3^x + 8 ≥ 0 2 * 3^x ≥ -8 3^x ≥ -4
Since 3^x is always positive, the inequality 3^x ≥ -4 is always true. Therefore, there are no restrictions on the values of x in this case.
Case 2: 3^x < 0
If 3^x < 0, we need to flip the direction of the inequality when dividing by 3^x:
3^x + 8 ≤ 1 / 3^(−x) 3^x + 8 ≤ 3^(x)
Now, we have a quadratic inequality in terms of 3^x. To solve this, we can rewrite the inequality as:
3^(x) - 3^x + 8 ≤ 0 2 * 3^x + 8 ≤ 0 2 * 3^x ≤ -8 3^x ≤ -4
Since 3^x is always positive, the inequality 3^x ≤ -4 is never true. Therefore, there are no solutions in this case.
Conclusion
In conclusion, the inequality 3^(2x+1) + 8 * 3^x - 3 ≥ 0 has no restrictions on the values of x. Therefore, the solution set is (-∞, +∞).
Please let me know if you need any further clarification or assistance!
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			