
3^(2х+1)+8•3^х -3≥0 Помогите, очень надо


Ответы на вопрос

3t²+8t-3≥0, 3(t+3)(t-1/3)≥0.
Поскольку t>0, то t+3>3, отсюда t-1/3≥0, т.е.3^x≥1/3, 3^x≥3^(-1),x≥-1, х∈[-1;+∞)



Solving the Inequality
To solve the inequality 3^(2x+1) + 8 * 3^x - 3 ≥ 0, we can follow these steps:
1. Rewrite the equation using exponent rules: 3^(2x+1) + 8 * 3^x - 3 ≥ 0. 2. Simplify the equation: 3^(2x+1) + 8 * 3^x ≥ 3. 3. Factor out a common term: 3^x(3^x + 8) ≥ 3.
Now, we have a quadratic inequality in terms of 3^x. To solve this inequality, we can consider two cases:
Case 1: 3^x > 0
If 3^x > 0, then we can divide both sides of the inequality by 3^x without changing the direction of the inequality:
3^x(3^x + 8) ≥ 3 3^x + 8 ≥ 3 / 3^x 3^x + 8 ≥ 1 / 3^(−x)
Case 2: 3^x < 0
If 3^x < 0, then we need to flip the direction of the inequality when dividing by 3^x:
3^x(3^x + 8) ≤ 3 3^x + 8 ≤ 1 / 3^(−x)
Now, let's solve each case separately.
Case 1: 3^x > 0
If 3^x > 0, we can divide both sides of the inequality by 3^x:
3^x + 8 ≥ 1 / 3^(−x) 3^x + 8 ≥ 3^(x)
Now, we have a quadratic inequality in terms of 3^x. To solve this, we can rewrite the inequality as:
3^(x) - 3^x + 8 ≥ 0 2 * 3^x + 8 ≥ 0 2 * 3^x ≥ -8 3^x ≥ -4
Since 3^x is always positive, the inequality 3^x ≥ -4 is always true. Therefore, there are no restrictions on the values of x in this case.
Case 2: 3^x < 0
If 3^x < 0, we need to flip the direction of the inequality when dividing by 3^x:
3^x + 8 ≤ 1 / 3^(−x) 3^x + 8 ≤ 3^(x)
Now, we have a quadratic inequality in terms of 3^x. To solve this, we can rewrite the inequality as:
3^(x) - 3^x + 8 ≤ 0 2 * 3^x + 8 ≤ 0 2 * 3^x ≤ -8 3^x ≤ -4
Since 3^x is always positive, the inequality 3^x ≤ -4 is never true. Therefore, there are no solutions in this case.
Conclusion
In conclusion, the inequality 3^(2x+1) + 8 * 3^x - 3 ≥ 0 has no restrictions on the values of x. Therefore, the solution set is (-∞, +∞).
Please let me know if you need any further clarification or assistance!


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili