
Расстояние между двумя городами 480км. с одного места к другому выехали одновременно два автомобиля
. скорость первого на 20км\в год больше за скорость другого , поэтому он приехал в пункт назначения на 2 года раньше, чем другой ,Найдите скорость каждого автомобиля .

Ответы на вопрос

х+20-скорость 1,время 480/(х+20)
480/х-480/(х+20)=2
2х(х+20)-480(х+20-х)=0
2х²+40х-9600=0
х²+20х-4800=0
х1+х2=-20 и х1*х2=-4800
х1=-80 не удов усл
х2=60км/ч-скорость2
60+20=80км/ч-скорость 1



Problem Analysis
We have two cars that start at the same time from one location and travel a distance of 480 km to reach their destination. The first car travels at a speed that is 20 km/h faster than the second car. The first car arrives at the destination 2 hours earlier than the second car. We need to find the speed of each car.Solution
Let's assume the speed of the second car is x km/h. Since the first car is traveling 20 km/h faster, its speed will be x + 20 km/h.We know that time equals distance divided by speed. The time taken by each car can be calculated using this formula.
For the first car: time = distance / speed time = 480 / (x + 20)
For the second car: time = distance / speed time = 480 / x
According to the problem, the first car arrives 2 hours earlier than the second car. So we can set up the following equation:
(480 / (x + 20)) - (480 / x) = 2
Now we can solve this equation to find the value of x, which represents the speed of the second car.
Calculation
Let's solve the equation:(480 / (x + 20)) - (480 / x) = 2
Multiplying through by x(x + 20) to eliminate the denominators:
480x - 480(x + 20) = 2x(x + 20)
Expanding and simplifying:
480x - 480x - 9600 = 2x^2 + 40x
2x^2 + 40x - 9600 = 0
Dividing through by 2:
x^2 + 20x - 4800 = 0
Now we can solve this quadratic equation to find the value of x.
Using the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
where a = 1, b = 20, and c = -4800.
Substituting the values:
x = (-20 ± √(20^2 - 4 * 1 * -4800)) / (2 * 1)
Simplifying:
x = (-20 ± √(400 + 19200)) / 2
x = (-20 ± √19600) / 2
x = (-20 ± 140) / 2
Now we have two possible values for x:
x1 = (-20 + 140) / 2 = 120 / 2 = 60
x2 = (-20 - 140) / 2 = -160 / 2 = -80
Since speed cannot be negative, we discard the negative value of x.
Therefore, the speed of the second car is 60 km/h.
The speed of the first car is x + 20 = 60 + 20 = 80 km/h.
Answer
The speed of the first car is 80 km/h and the speed of the second car is 60 km/h.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili