
Иследовать график функции y=0,5x^2+4x+10


Ответы на вопрос

Y = 0.5*X² + 4X+10
1) Область определения - R - все по Х.
2) Находим ДИСКРИМИНАНТ квадратного уравнения и видим, что D= - 4
Вывод действительных корней - точек пересечения с осью Х - НЕТ
3) Для поиска экстремума находим производную
Y' = X+4. Минимум при Х= - 4 равен Y=2
4) Строим график для проверки
И - всё готово.



Graph of the Function y = 0.5x^2 + 4x + 10
To analyze the graph of the function y = 0.5x^2 + 4x + 10, we can examine its key features such as the vertex, axis of symmetry, and the behavior of the graph.
The general form of a quadratic function is y = ax^2 + bx + c, where a, b, and c are constants. In this case, a = 0.5, b = 4, and c = 10.
To find the vertex of the parabola, we can use the formula x = -b/2a. Plugging in the values, we get:
x = -(4)/(2*0.5) = -4/1 = -4
To find the corresponding y-coordinate, we substitute x = -4 into the equation:
y = 0.5(-4)^2 + 4(-4) + 10 = 0.5(16) - 16 + 10 = 8 - 16 + 10 = 2
Therefore, the vertex of the parabola is (-4, 2).
The axis of symmetry is a vertical line that passes through the vertex. In this case, the equation of the axis of symmetry is x = -4.
To determine the behavior of the graph, we can look at the coefficient of the x^2 term. Since the coefficient a = 0.5 is positive, the parabola opens upwards. This means that as x approaches positive or negative infinity, the y-values of the function also increase without bound.
Now let's plot some points to get a better understanding of the graph:
- When x = -3: y = 0.5(-3)^2 + 4(-3) + 10 = 0.5(9) - 12 + 10 = 4.5 - 12 + 10 = 2.5 - 2 = 0.5 So, the point (-3, 0.5) lies on the graph.
- When x = 0: y = 0.5(0)^2 + 4(0) + 10 = 0 + 0 + 10 = 10 So, the point (0, 10) lies on the graph.
- When x = 1: y = 0.5(1)^2 + 4(1) + 10 = 0.5 + 4 + 10 = 14.5 So, the point (1, 14.5) lies on the graph.
- When x = 2: y = 0.5(2)^2 + 4(2) + 10 = 2 + 8 + 10 = 20 So, the point (2, 20) lies on the graph.
- When x = 3: y = 0.5(3)^2 + 4(3) + 10 = 4.5 + 12 + 10 = 26.5 So, the point (3, 26.5) lies on the graph.
- When x = 4: y = 0.5(4)^2 + 4(4) + 10 = 8 + 16 + 10 = 34 So, the point (4, 34) lies on the graph.
Based on these points, we can plot the graph of the function y = 0.5x^2 + 4x + 10. The graph is a parabola that opens upwards, with the vertex at (-4, 2) and the axis of symmetry at x = -4. The graph passes through the points (-3, 0.5), (0, 10), (1, 14.5), (2, 20), (3, 26.5), and (4, 34).

Please note that the graph is a visual representation and may not be perfectly accurate. It is always recommended to use graphing software or a graphing calculator for precise graphs.


Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili