Вопрос задан 07.05.2019 в 10:54. Предмет Математика. Спрашивает Осипова София.

Квадрат и прямоугольник имеют одинаковый периметр 36 см площадь какого четырёхугольника 10 см?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Gryaznov Artem.
Р квадрата =а*4 тогда
36:4=9
Sквадрата =а*а тогда
9*9=81-sквадрата значит у прямоугольника s - 10см
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Perimeter of a Square and Rectangle

To find the area of a quadrilateral with a perimeter of 36 cm, we need to determine whether it is a square or a rectangle. Let's consider both cases separately:

Case 1: Square If the quadrilateral is a square, it means all four sides are equal in length. Let's denote the length of each side as 'a'. The perimeter of a square is given by the formula P = 4a, where P is the perimeter and 'a' is the length of each side.

Given that the perimeter is 36 cm, we can set up the equation: 4a = 36

Solving for 'a', we find: a = 36 / 4 a = 9 cm

Therefore, if the quadrilateral is a square, each side measures 9 cm.

The area of a square is given by the formula A = a^2, where A is the area and 'a' is the length of each side.

Substituting the value of 'a' into the formula, we get: A = 9^2 A = 81 cm^2

Case 2: Rectangle If the quadrilateral is a rectangle, it means opposite sides are equal in length. Let's denote the length of one pair of opposite sides as 'a' and the length of the other pair of opposite sides as 'b'. The perimeter of a rectangle is given by the formula P = 2a + 2b, where P is the perimeter, 'a' is the length of one pair of opposite sides, and 'b' is the length of the other pair of opposite sides.

Given that the perimeter is 36 cm, we can set up the equation: 2a + 2b = 36

Since the problem does not provide any specific values for 'a' or 'b', we cannot determine the exact dimensions of the rectangle. However, we can explore some possible solutions.

For example, if we assume 'a' = 10 cm and 'b' = 8 cm, we can calculate the area of the rectangle using the formula A = a * b: A = 10 * 8 A = 80 cm^2

Please note that this is just one possible solution, and there may be other combinations of 'a' and 'b' that satisfy the given conditions.

In summary, the area of the quadrilateral with a perimeter of 36 cm can be 81 cm^2 if it is a square or it can be 80 cm^2 if it is a rectangle.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос