
Опытом установлено, что в среднем 70% массовой продукции, выпускаемой некоторой мастерской,
принадлежит первому сорту. Какова вероятность того, что из 6 взятых наудачу изделий этой мастерской окажется не менее пяти изделий первого сорта.

Ответы на вопрос

Вероятность НЕ первого сорта q = 1 - 0.7 = 0.3
Вероятность шести событий из 5 ДА и одного НЕТ вычисляется по формуле
Р(A) = p⁵q = 0.7*0.7*0.7*0.7*0.7*0.3 = 0.7⁵*0.3 = 0.16807 * 0.3 ~ 0.050=5% - ОТВЕТ
Так мало, потому, что все пять из шести будут первого сорта.



Problem Analysis
We are given that, on average, 70% of the mass-produced items from a certain workshop belong to the first grade. We need to find the probability that out of 6 randomly selected items from this workshop, at least 5 will be of the first grade.Solution
To solve this problem, we can use the binomial probability formula. The formula for the probability of getting exactly k successes in n trials, where the probability of success in a single trial is p, is given by:P(X = k) = C(n, k) * p^k * (1-p)^(n-k)
Where: - P(X = k) is the probability of getting exactly k successes - C(n, k) is the number of combinations of n items taken k at a time - p is the probability of success in a single trial - (1-p) is the probability of failure in a single trial - n is the total number of trials
In this case, the probability of success (getting an item of the first grade) in a single trial is 0.7, and the total number of trials is 6.
To find the probability of getting at least 5 items of the first grade, we need to calculate the probabilities of getting exactly 5, 6 items of the first grade and sum them up.
Calculation
Let's calculate the probability using the formula mentioned above:P(X >= 5) = P(X = 5) + P(X = 6)
P(X = 5) = C(6, 5) * 0.7^5 * (1-0.7)^(6-5)
P(X = 6) = C(6, 6) * 0.7^6 * (1-0.7)^(6-6)
Answer
Calculating the probabilities:P(X = 5) = 6 * 0.7^5 * (1-0.7)^(6-5) = 0.302526
P(X = 6) = 1 * 0.7^6 * (1-0.7)^(6-6) = 0.117649
Summing up the probabilities:
P(X >= 5) = P(X = 5) + P(X = 6) = 0.302526 + 0.117649 = 0.420175
Therefore, the probability that out of 6 randomly selected items from this workshop, at least 5 will be of the first grade is approximately 0.420175 or 42.02%.
Please note that the above calculations are based on the assumption that the probability of getting an item of the first grade is constant for each trial and that the trials are independent of each other.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili