Вопрос задан 06.05.2019 в 01:17. Предмет Математика. Спрашивает Балдый Даша.

X^(-4/3)-x^(-2/3)-8=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хаитбаев Фаррух.
X^(-4/3)-x^(-2/3)-8=0
x^(-6/3)=8
x^-2=8
1/x^2=8
8x^2=1
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного уравнения, можно использовать замену переменной.

Пусть u = x^(-2/3). Тогда уравнение можно переписать в виде:

u^2 - u - 8 = 0

Далее, решим это квадратное уравнение.

Применяя квадратную формулу, получим:

u = (-(-1) ± √((-1)^2 - 4*1*(-8))) / (2*1) u = (1 ± √(1 + 32)) / 2 u = (1 ± √33) / 2

Теперь, подставим обратно значение u в исходное уравнение:

x^(-2/3) = (1 ± √33) / 2

Чтобы найти x, необходимо возвести обе части уравнения в -3/2 степень:

(x^(-2/3))^(-3/2) = ((1 ± √33) / 2)^(-3/2)

x = ((1 ± √33) / 2)^(-3/2)

Таким образом, получаем два значения x:

x = ((1 + √33) / 2)^(-3/2) x = ((1 - √33) / 2)^(-3/2)

Это и есть решения исходного уравнения.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос