
1)2cos^2t + cos t =0 2)cos(pi/2-t)-sin(pi+t)=sqrt2 3)cost=-1 4)sint=-sqrt3/2


Ответы на вопрос

cost (2cost + 1)= 0
cos t=0 или 2cost + 1=0
t=П/2+Пn, или 2cost=-1
cost= - 0,5
t= П/6 + 2Пn или t=-П/6 + 2Пn, n принадлежит Z.



Equation 1: 2cos^2(t) + cos(t) = 0
To solve this equation, we can first factor out the common term cos(t):
cos(t)(2cos(t) + 1) = 0
Now, we have two possibilities:
1) cos(t) = 0 2) 2cos(t) + 1 = 0
For the first possibility, cos(t) = 0, we know that cos(t) is equal to 0 at π/2 radians and 3π/2 radians. So, we can write:
t = π/2 + kπ, where k is an integer t = 3π/2 + kπ, where k is an integer
For the second possibility, 2cos(t) + 1 = 0, we can solve for cos(t):
2cos(t) = -1 cos(t) = -1/2
cos(t) is equal to -1/2 at 2π/3 radians and 4π/3 radians. So, we can write:
t = 2π/3 + 2kπ, where k is an integer t = 4π/3 + 2kπ, where k is an integer
Therefore, the solutions to the equation 2cos^2(t) + cos(t) = 0 are:
t = π/2 + kπ, where k is an integer t = 3π/2 + kπ, where k is an integer t = 2π/3 + 2kπ, where k is an integer t = 4π/3 + 2kπ, where k is an integer
Equation 2: cos(pi/2 - t) - sin(pi + t) = sqrt(2)
To solve this equation, we can use the trigonometric identities:
cos(pi/2 - t) = sin(t) sin(pi + t) = -sin(t)
Replacing these identities in the equation, we get:
sin(t) - (-sin(t)) = sqrt(2) 2sin(t) = sqrt(2) sin(t) = sqrt(2)/2
sin(t) is equal to sqrt(2)/2 at π/4 radians and 3π/4 radians. So, we can write:
t = π/4 + 2kπ, where k is an integer t = 3π/4 + 2kπ, where k is an integer
Therefore, the solutions to the equation cos(pi/2 - t) - sin(pi + t) = sqrt(2) are:
t = π/4 + 2kπ, where k is an integer t = 3π/4 + 2kπ, where k is an integer
Equation 3: cos(t) = -1
The equation cos(t) = -1 is satisfied when t = π + 2kπ, where k is an integer.
Therefore, the solution to the equation cos(t) = -1 is:
t = π + 2kπ, where k is an integer
Equation 4: sin(t) = -sqrt(3)/2
The equation sin(t) = -sqrt(3)/2 is satisfied when t = 7π/6 + 2kπ and t = 11π/6 + 2kπ, where k is an integer.
Therefore, the solutions to the equation sin(t) = -sqrt(3)/2 are:
t = 7π/6 + 2kπ, where k is an integer t = 11π/6 + 2kπ, where k is an integer
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili