
Из городов а и в, расстояние между которыми 180 км, отправлены в одно и тоже время два поезда
навстречу друг другу. После их встречи поезд, вышедший из А, прибывает в В через 2 часа, а другой прибывает в А через 4 часа 30 минут. найдите скорость каждого поезда

Ответы на вопрос

180:4.5=40км.ч скорость поезда ВА



Problem Analysis
We are given that two trains start from cities A and B, which are 180 km apart, and travel towards each other. After their meeting, the train that started from A arrives at B in 2 hours, while the other train arrives at A in 4 hours and 30 minutes. We need to find the speed of each train.Solution
Let's assume the speed of the train starting from A is vA and the speed of the train starting from B is vB.To find the speed of each train, we can use the formula:
Speed = Distance / Time
We know that the distance between the two cities is 180 km.
Let's calculate the time taken by each train to meet:
The train starting from A takes 2 hours to reach B after the meeting. So, the total time taken by this train is the time taken to meet + the time taken to travel from the meeting point to B. Let's call the time taken to meet as t.
The train starting from B takes 4 hours and 30 minutes to reach A after the meeting. So, the total time taken by this train is the time taken to meet + the time taken to travel from the meeting point to A. Let's call the time taken to meet as t.
Now, we can write the equations:
Distance = Speed * Time
For the train starting from A: 180 km = vA * (t + 2)
For the train starting from B: 180 km = vB * (t + 4.5)
We have two equations and two unknowns (vA and vB). We can solve these equations to find the values of vA and vB.
Let's solve the equations:
180 = vA * (t + 2) --(1)
180 = vB * (t + 4.5) --(2)
From equation (1), we can express t in terms of vA:
t = (180 / vA) - 2
Substituting the value of t in equation (2):
180 = vB * ((180 / vA) - 2 + 4.5)
Simplifying the equation:
180 = vB * ((180 - 2vA) / vA + 2.5)
Cross-multiplying:
180 * vA = vB * (180 - 2vA + 2.5vA)
180vA = vB * (180 + 0.5vA)
Dividing both sides by vA:
180 = vB * (180 / vA + 0.5)
Now, we have an equation relating vA and vB. We can solve this equation to find the values of vA and vB.
Let's solve the equation:
180 = vB * (180 / vA + 0.5)
Dividing both sides by 180:
1 = vB / vA + 0.5
Subtracting 0.5 from both sides:
0.5 = vB / vA
Cross-multiplying:
vB = 0.5 * vA
Substituting the value of vB in equation (1):
180 = vA * (t + 2)
180 = vA * ((180 / vA) - 2 + 2)
Simplifying the equation:
180 = vA * (180 / vA)
180 = 180
The equation is true for any value of vA. This means that the value of vA can be any positive number.
Since vB = 0.5 * vA, the value of vB will be half of vA.
Therefore, the speed of the train starting from A can be any positive number, and the speed of the train starting from B will be half of the speed of the train starting from A.
In conclusion, the speed of each train can vary, but the speed of the train starting from B will always be half of the speed of the train starting from A.
Note: The specific values of vA and vB cannot be determined without additional information.
Answer
The speed of the train starting from A can be any positive number, and the speed of the train starting from B will be half of the speed of the train starting from A.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili