Вопрос задан 05.05.2019 в 04:44. Предмет Математика. Спрашивает Бодров Максим.

Подчеркните числа делящиеся на 15 -720?123?321?235?774?600?2003?2004? 2005?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Усербаева Наргиз.
720:15=48
123:15=8,2   не подходит.
321:15=21,4   не подходит.
235:15=15,6   не подходит
774:15=51,6  не подходит.
600:15=40
2003:15=133,53  не подходит.
2004:15=133,6   не подходит.
2005:15=133,6  не подходит.

Ответ: 720, 600 
0 0
Отвечает Фадеев Игорь.
Вот эти числа 720 и 
600..


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Numbers Divisible by 15

To identify the numbers that are divisible by 15 from the given list, let's go through each number one by one:

- 720: To determine if 720 is divisible by 15, we can check if it is divisible by both 3 and 5, which are the prime factors of 15. Since 720 is divisible by both 3 and 5, it is divisible by 15.

- 123: To determine if 123 is divisible by 15, we can check if it is divisible by both 3 and 5. Since 123 is not divisible by 3, it is not divisible by 15.

- 321: To determine if 321 is divisible by 15, we can check if it is divisible by both 3 and 5. Since 321 is not divisible by 3, it is not divisible by 15.

- 235: To determine if 235 is divisible by 15, we can check if it is divisible by both 3 and 5. Since 235 is not divisible by 3, it is not divisible by 15.

- 774: To determine if 774 is divisible by 15, we can check if it is divisible by both 3 and 5. Since 774 is not divisible by 5, it is not divisible by 15.

- 600: To determine if 600 is divisible by 15, we can check if it is divisible by both 3 and 5. Since 600 is divisible by both 3 and 5, it is divisible by 15.

- 2003: To determine if 2003 is divisible by 15, we can check if it is divisible by both 3 and 5. Since 2003 is not divisible by 3, it is not divisible by 15.

- 2004: To determine if 2004 is divisible by 15, we can check if it is divisible by both 3 and 5. Since 2004 is divisible by both 3 and 5, it is divisible by 15.

- 2005: To determine if 2005 is divisible by 15, we can check if it is divisible by both 3 and 5. Since 2005 is not divisible by 3, it is not divisible by 15.

Based on the above analysis, the numbers that are divisible by 15 from the given list are 720 and 2004.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос