
Одна из углов параллелограмма на 40 градусов больше другого. найдите углы параллелограмма.


Ответы на вопрос




Finding the Angles of a Parallelogram
To find the angles of a parallelogram, we need to know that opposite angles in a parallelogram are congruent. Let's assume that one of the angles in the parallelogram is x degrees. According to the given information, one of the angles is 40 degrees larger than the other.
Let's denote the measure of the other angle as y degrees. Based on the given information, we can set up the following equation:
x = y + 40
Since opposite angles in a parallelogram are congruent, we can also say that:
x + y = 180
Now we have a system of equations that we can solve to find the values of x and y.
Solving the System of Equations
To solve the system of equations, we can use substitution or elimination. Let's use substitution to find the values of x and y.
From the first equation, we can express y in terms of x:
y = x - 40
Substituting this expression for y into the second equation, we get:
x + (x - 40) = 180
Simplifying the equation:
2x - 40 = 180
Adding 40 to both sides:
2x = 220
Dividing both sides by 2:
x = 110
Now that we have the value of x, we can substitute it back into the first equation to find y:
y = 110 - 40 = 70
Therefore, the angles of the parallelogram are 110 degrees and 70 degrees.
Answer
The angles of the parallelogram are 110 degrees and 70 degrees.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili