Вопрос задан 03.05.2019 в 22:36. Предмет Математика. Спрашивает Едельбаева Риза.

1) [7+2x>5+x, [3x+2<8+x; 2) [1-0,5x<4-x, [9-2,8x>6-1,3x; 3) [0,4x-1<0,5x-1,7,

[2,7x-10<0,9x-1; 4)[2,8x-17>=0,3x-4,5, [12,3x-16,6<=7,1x+19,8; решите систему неравенств
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шишкова Оксана.
1) {х>-2 и х<3, тогда ответ -2<x<3
2) {х<6 и х<2, тогда ответ x<2
3) {х>7 и х<5, тогда ответ решений нет
4) {х>=5 и х<=7, тогда ответ 5<=x<=7
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving the System of Inequalities

To solve the given system of inequalities, let's solve each pair of inequalities separately and then find the intersection of their solutions.

1) Solving 7 + 2x > 5 + x and 3x + 2 < 8 + x:

Starting with the first inequality: 7 + 2x > 5 + x

Subtracting x from both sides: 7 + x > 5

Subtracting 7 from both sides: x > -2

The solution to the first inequality is x > -2.

Moving on to the second inequality: 3x + 2 < 8 + x

Subtracting x from both sides: 3x - x < 8 - 2

Simplifying: 2x < 6

Dividing by 2: x < 3

The solution to the second inequality is x < 3.

Combining the solutions: The solutions to the first pair of inequalities are x > -2 and x < 3.

2) Solving 1 - 0.5x < 4 - x and 9 - 2.8x > 6 - 1.3x:

Starting with the first inequality: 1 - 0.5x < 4 - x

Adding 0.5x to both sides: 1 < 4 - 0.5x

Subtracting 4 from both sides: -3 < -0.5x

Dividing by -0.5 (note that dividing by a negative number reverses the inequality): 6 > x

The solution to the first inequality is x > 6.

Moving on to the second inequality: 9 - 2.8x > 6 - 1.3x

Adding 1.3x to both sides: 9 + 1.3x > 6 + 2.8x

Subtracting 6 from both sides: 3 + 1.3x > 2.8x

Subtracting 1.3x from both sides: 3 > 1.5x

Dividing by 1.5: 2 > x

The solution to the second inequality is x < 2.

Combining the solutions: The solutions to the second pair of inequalities are x > 6 and x < 2.

3) Solving 0.4x - 1 < 0.5x - 1.7 and 2.7x - 10 < 0.9x - 1:

Starting with the first inequality: 0.4x - 1 < 0.5x - 1.7

Adding 1 to both sides: 0.4x < 0.5x - 0.7

Subtracting 0.5x from both sides: -0.1x < -0.7

Dividing by -0.1 (note that dividing by a negative number reverses the inequality): x > 7

The solution to the first inequality is x > 7.

Moving on to the second inequality: 2.7x - 10 < 0.9x - 1

Adding 10 to both sides: 2.7x < 0.9x + 9

Subtracting 0.9x from both sides: 1.8x < 9

Dividing by 1.8: x < 5

The solution to the second inequality is x < 5.

Combining the solutions: The solutions to the third pair of inequalities are x > 7 and x < 5.

4) Solving 2.8x - 17 >= 0.3x - 4.5 and 12.3x - 16.6 <= 7.1x + 19.8:

Starting with the first inequality: 2.8x - 17 >= 0.3x - 4.5

Adding 17 to both sides: 2.8x >= 0.3x + 12.5

Subtracting 0.3x from both sides: 2.5x >= 12.5

Dividing by 2.5: x >= 5

The solution to the first inequality is x >= 5.

Moving on to the second inequality: 12.3x - 16.6 <= 7.1x + 19.8

Subtracting 7.1x from both sides: 5.2x - 16.6 <= 19.8

Adding 16.6 to both sides: 5.2x <= 36.4

Dividing by 5.2: x <= 7

The solution to the second inequality is x <= 7.

Combining the solutions: The solutions to the fourth pair of inequalities are x >= 5 and x <=

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос