Вопрос задан 03.05.2019 в 01:30. Предмет Математика. Спрашивает Соловей Роман.

Решить уровнения6090:x=30 2y-15= 23 упростите выражения 45× m× 2 x×14×10надите значения выражения

9×68--515:5 86×(258+246):129; решить с помощью уровнения задачу на трех одинаковых клумбахи вдоль дорожекпарка высадили46 кустов роз.Сколько кустов розна одной клумбе..если вдоль дорожек посажено 16 кустов;найдите значения выражения (342:18+81×11):35-5;решить уровнения60-2х=28;3х+9х=132;Несколько двухкопеечных монет и столько же пятачков составляют сумму 84 коп.Сколько было пятачков?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мирошник Алексей.
1)6090:X=30
x= -6090:30
x=-203
2)2y-15=23
2y=23+15
2y=38
y=19
3)9*68-515:586X(258+246):129= 1)258+246=504 2)9*68=612 3)515:586=0,9                                                             4)0,9*504=454 5)454*129=58566 6)612-0,9=611
4)(342:18+81*11):35-5= 1)342:18=19 2)81*11=891 3)19+891=910 4)910:35=26                                            5)26-5=21
5)60-2X=28
-2x=28-60
-2x=-32
x=16
6)3x+9x=132
12x=132
x=11
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Equations and Expressions

To solve the equations and simplify the expressions you provided, let's go through each one step by step.

1. Equation: 6090:x = 30 + 2y - 15 = 23 To solve this equation, we need to isolate the variable x. Let's start by simplifying the equation: 30 + 2y - 15 = 23 Combine like terms: 2y + 15 = 23 Subtract 15 from both sides: 2y = 8 Divide both sides by 2: y = 4 Now, let's substitute the value of y back into the equation to find x: 6090:x = 30 + 2(4) - 15 = 23 Simplifying further: 6090:x = 30 + 8 - 15 = 23 6090:x = 23 Therefore, x = 6090.

2. Expression: 45 × m × 2 + x × 14 × 10 To simplify this expression, we can follow the order of operations (PEMDAS/BODMAS). Let's substitute the given values: 45 × m × 2 + x × 14 × 10 Simplifying further: 90m + 140x Therefore, the simplified expression is 90m + 140x.

3. Expression: (342:18 + 81 × 11):35 - 5 Again, let's follow the order of operations to simplify this expression: (342 ÷ 18 + 81 × 11) ÷ 35 - 5 Simplifying further: (19 + 891) ÷ 35 - 5 (910) ÷ 35 - 5 26 - 5 Therefore, the value of the expression is 21.

4. Equation: 60 - 2x = 28 To solve this equation, we need to isolate the variable x. Let's start by simplifying the equation: 60 - 2x = 28 Subtract 60 from both sides: -2x = -32 Divide both sides by -2: x = 16 Therefore, x = 16.

5. Equation: 3x + 9x = 132 To solve this equation, we need to combine like terms: 3x + 9x = 132 12x = 132 Divide both sides by 12: x = 11 Therefore, x = 11.

6. Problem: Three identical flower beds were planted along the park paths. If 46 rose bushes were planted along the paths, how many rose bushes are there in one flower bed if 16 bushes were planted along the paths? Let's assume the number of rose bushes in one flower bed is represented by x. Since the flower beds are identical, the number of rose bushes in each bed will be the same. We can set up the following equation: 3x = 46 Divide both sides by 3: x = 46 ÷ 3 x = 15.33 (rounded to the nearest whole number) Therefore, there are approximately 15 rose bushes in one flower bed.

7. Problem: Several two-kopeck coins and an equal number of five-kopeck coins add up to 84 kopecks. How many five-kopeck coins were there? Let's assume the number of two-kopeck coins is represented by x. Since there are an equal number of five-kopeck coins, the number of five-kopeck coins will also be x. We can set up the following equation: 2x + 5x = 84 Combine like terms: 7x = 84 Divide both sides by 7: x = 12 Therefore, there were 12 five-kopeck coins.

Please let me know if you have any further questions!

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос