Вопрос задан 02.05.2019 в 15:21. Предмет Математика. Спрашивает Дикманов Дима.

ctg²t (1-cos2t)+cos²t

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Панова Алёна.
Используем формулы:
1=cos²t+sin²t
cos2t=cos²t-sin²t
ctgt=cost/sint
Упростим
ctg²t(cos²t+sin²t-(cos²t-sin²t))+cos²t=ctg²t(cos²t+sin²t-cos²t+sin²t)+cos²t= cos²t/sin²t * 2sin²t+cos²t=2cos²t+cos²t=3cos²t
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Вычисление выражения ctg²t + (1-cos2t) + cos²t

Давайте вычислим данное выражение поэтапно.

1. Найдем значение \(ctg^2t\): Тангенс угла \(t\) можно выразить как \(\frac{{\sin t}}{{\cos t}}\), поэтому квадрат тангенса: \(ctg^2t = \left(\frac{{\sin t}}{{\cos t}}\right)^2 = \frac{{\sin^2 t}}{{\cos^2 t}\)

2. Теперь рассмотрим \(1 - \cos 2t\): Используя тригонометрическую формулу для двойного угла, \(\cos 2t = 2\cos^2 t - 1\), поэтому \(1 - \cos 2t = 1 - (2\cos^2 t - 1) = 2 - 2\cos^2 t\)

3. Наконец, вычислим значение \(\cos^2 t\).

Теперь, подставим найденные значения обратно в исходное выражение и упростим его.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос