Вопрос задан 02.05.2019 в 14:55. Предмет Математика. Спрашивает Адайгужиева Сабина.

14-(2+3х-х²)=х²+4х-9 помогите, дам лучший ответ, 5 звезд!!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Клименко Данил.
14-2-3х+х^2=х^2+4х-9
14-2-3х=4х-9
12=7х-9
21=7х
х=3
0 0
Отвечает Мамаев Эрик.
12-3х+х2=х2+4х-9
-7х+х2-х2=-21
-7х=-21
х=3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving the Equation

To solve the equation 14 - (2 + 3x - x^2) = x^2 + 4x - 9, we can follow these steps:

1. Simplify both sides of the equation by removing parentheses and combining like terms. 2. Move all terms containing x to one side of the equation. 3. Set the equation equal to zero. 4. Solve the resulting quadratic equation.

Let's go through each step in detail.

Step 1: Simplify the Equation The equation we need to solve is: 14 - (2 + 3x - x^2) = x^2 + 4x - 9.

To simplify the equation, we can start by removing the parentheses and combining like terms:

14 - 2 - 3x + x^2 = x^2 + 4x - 9.

Simplifying further, we have:

12 - 3x + x^2 = x^2 + 4x - 9.

Step 2: Move Terms to One Side Next, we want to move all terms containing x to one side of the equation. We can do this by subtracting x^2 and 4x from both sides:

12 - 3x + x^2 - x^2 - 4x = x^2 + 4x - 9 - x^2 - 4x.

Simplifying, we get:

12 - 7x = -9.

Step 3: Set the Equation Equal to Zero Now, we want to set the equation equal to zero. We can do this by adding 9 to both sides:

12 - 7x + 9 = -9 + 9.

Simplifying, we have:

21 - 7x = 0.

Step 4: Solve the Quadratic Equation The equation we have now is a quadratic equation. To solve it, we can set it equal to zero and factor or use the quadratic formula. Let's use the quadratic formula:

The quadratic formula is given by:

x = (-b ± √(b^2 - 4ac)) / (2a).

In our equation, a = -7, b = 21, and c = 0. Plugging these values into the quadratic formula, we get:

x = (-21 ± √(21^2 - 4(-7)(0))) / (2(-7)).

Simplifying further, we have:

x = (-21 ± √(441)) / (-14).

Since the square root of 441 is 21, we can simplify the equation to:

x = (-21 ± 21) / (-14).

This gives us two possible solutions:

1. x = (-21 + 21) / (-14) = 0 / (-14) = 0. 2. x = (-21 - 21) / (-14) = -42 / (-14) = 3.

Therefore, the solutions to the equation 14 - (2 + 3x - x^2) = x^2 + 4x - 9 are x = 0 and x = 3.

Please note that the solutions provided are based on the given equation. If there are any additional constraints or context, please let me know, and I'll be happy to assist you further.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос